Basrah Journal of Science

Vol. 39(1),37-55, 2021

New Analytical Study of Non-Newtonian Jeffery Hamel Flow of Casson Fluid
in Divergent and Convergent Channels by Perturbation Iteration Algorithm

Abeer Majeed Jasim”, Ali Juwaid Al-Maliki

Department of Mathematics, College of Sciences, University of Basrah, Basra. Iraq

*Corresponding author: E-mail: abeer.jassem@yahoo.com

D0i:10.29072 /basjs.202113

Abstract

Perturbation iteration algorithm (PIA) is used to solve Jeffery Hamel flow
problem of non-Newtonian fluid which is Casson fluid (JHFCF) to simplify a
suitable transformation of similarities that applied to obtain a non- linear ordinary
differential equation. The resulting equation is solved by PIA and numerically using
fourth order Runge Kutta (RK4). Both solutions are compared by the variance of the
parameter method (VPM) in order to check the efficacy of the provided (PIA)
approach. For both diverging and converging channels, the influences of the

parameters are demonstrated by graphical simulation.
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1. Introduction:

The flow through tapered walls has gained a lot of interest because of its wide range of
applications in the aerospace, chemical, civil, environmental, bio- mechanical engineering, and
mechanical. The blood is considered as a kind of flow in the human body where capillaries and
arteries are linked to each other. In addition, these applications are also related in to the flow in
channels and rivers. A mathematical model of the flows through non parallel walls was firstly
introduced by Jeffrey[1] and Hamel [2]. These types of flows are known as the Jeffery Hamel
flows of Casson fluid problem. Extensively, JHFCFP has been discussed by several authors in
many types of research [3-7]. Because of the complex rheological nature of non-Newtonian
fluids, there is no single model that can be used to simulate the whole class. Therefore, many
non-Newtonian flow models have been presented over the years. Casson fluid is one of these
models that exhibit blood type behavior [8, 9]. Inherently, most of the models that describing a
physical problem are accomplished in the form of non- linearity. Therefore, the exact solution is
not found, furthermore approximation techniques are developed to solve these complex problems
including several analytical methods such as domain decomposition method (ADM), variance
of the parameter method (VPM ) and perturbation iteration algorithm( PIA) [10-15]. The
objective of this paper is the search for analytical approximate solution for the Non-linear
problem which describes incompressible viscous Jeffery Hamel flow of Casson Fluid. In
addition, we studies PIA is based on algorithm which are classified with respect to the number of
terms in the perturbation expansion nl and the degrees of derivatives in the Taylor expansions
n,. However, this method has been named as PIA (n4,n,),ny,n, =1,2,.... P 1A (nl,

) have a famous technique for solving problems in different fields of science and engineeringn,
In this study, PIA is used to solve a rather complex problem JHFP in diverging and

converging channels to find analytical approximate solution and known the effect of physical
parameters on these solutions. The main advantage of this method is that, it reduces the
computational work while still maintaining a higher level of accuracy. In addition, PIA (1,1) is
analyze to give the sufficient conditions for convergence of the approximation series solution

generated by PIA.
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2. Perturbation lIteration Algorithm

Perturbation Iteration techniques are a class of analytical methods and important for
determining approximate solutions of nonlinear algebraic equations, differential equations and
integral-differential equations. They are useful for demonstrating, predicting, and describing
phenomena in vibrating systems that are caused by nonlinear effects. In mathematics, perturbation
methods comprise mathematical methods for finding an approximate solution to a problem, by
starting from the exact solution of a related simpler problem. Perturbation is widely used when
the problem at hand does not have a known exact solution, but can be expressed as a small change
to a known solvable problem. Perturbation methods is used in a wide range of Physical fields. To
explain the idea of Perturbation Iteration Algorithm(1,1), consider the nonlinear ordinary

differential equation as form [22]:

av d?v d3y dn-Dy gy

D(T], lp(n), E, d—nz,d—n3,..., dn(n—l) , dn(n))zo' (1)
where D is a function of W and its drivatives, ¥ is an unkown function and denote 7 spactial
dependent variable. In Equation (1), we can add auxiliary perturbation parameter & as shown

in the following equation:

av d*y a3y dn-Dy gy
D (n' v, dn’ dn? *dnd '’ dpm-v dn(n)) =0, (2)
rewriting the Equation (1) as the following;

A¥m+1  d2Wmis d O AW _
D (1, Wy, Tt me | ot g ) =0, @3)

where, m represents the mth iteration with defined perturbation expansions with correction term as

follow;
W, =W +e(We)o,
Y, =Y + g(lpc)l,

W =¥, + (V)

WYy =Y + E(ch)m ’ 4)
where, ¢ is a small perturbation parameter and W, is the correction term in the perturbation

expansion. Now Substituting (4) in (3), we obtain
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D(Wp(e) + e(Wdm, Pr(m) + e(W)m Y (M) + e(Wodm, W' () + e(Wm, -, Wit () +
e(¥, nm_lr Lprrrll(n) +e(W)m €) =0, )

in the next step we take the Taylor series expansion  for the first order derivative in the

neighborhood of ¢ = 0, yields

ay a2y dn-Dy dmyp
D (n’ +1(_r’) m+1’ m+1’ . _m+1’ m+1’ ) + 8_ (lp ) +
m dan dn? dnm-1 dn cJm .
dp (n-1) (n) ab _
dq,, (Fm| +te—Gmm  (Yodm dm' | te-=0, (6)
=0 m =0 e=0
rearranging Equation (6) gives

dD _dD_ ‘(if 5 dD

n) _ -D le le d‘I—’ n-1) _ Ge
(lpc - dD m (‘P )m m (ch)m (ch dg . (7)

aw{®) dw%‘) dlpgfl‘) dlpgf) aw(w

Now, all calculations in Equation (7) are performed at & = 0, results in Equation (7) get ordinary
differential equation. This ordinary differential equation is solved to obtain (¥,),,(n). In order
to find the first correction term, W, is atrial function satisfying the initial condition. Substituting

Y, into Eq. (7), the first order problem is:

- R dp d_D 76“;(15 ) (n-1) dD

n - dlI’ n—1

(lpc)o =——"4@a — 0 (IIU )0 (WC)O . (lpc gg ) (8)
aw(™ dlllgn) dwg") dwg") aw(

thus, we can express the approximate solutions in the following way, firstly can be defined:

Wo = Co, (P)m = Cint1s 9)
and the other solutions can be defined in the following iterations
lIJO = Co,

Y1 =%+ We)o=Co + (4,
l'pz = l'pl + (ch)l = CO + Cl + Cz,

Y1 =Y+ W)m=C+C+ G+ + Gy = 2?:61 C;. (10)
Consequently, the value of (W¥,),,+1 are substituted in Equation (4) to obtain on ¥,,(n). Itis
the approximate-analytical solution required, which is in the form of the power series. The solution

of Equation (2) can be represented as:

lP(TI) = Tlll_{?o W1 = ?0=0 C;.
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3. Mathematical Formulation

Consider the flow of a Casson fluid initiated due to source or sink at the intersection of two
rigid plane walls. The angle between the walls is taken as 2k The flow is assumed to be symmetric
and purely radial u, as shown in Figure (1). The model of fluid flow composed of the continuity
equation describing conservation of mass, momentum equation derived from Newton second law.

These equations are defined mathematically as follows [15] :

V.U=0, (11)
o[ S+ W.v)] = —Vp + V1, (12)
Such that U is the fluid velocity, Vis the derivative operator ( gradient ), p is the fluid density,
and p is the hydrodynamic pressure. The following equation shows the viscosity of the liquid [11]

p
T = 2 (,uB + \/%) Cij, T# T, (13)

where m = c;jc;j with ¢;; being the (i , j) the components of the deformation rate, 7. is the

product of the deformation rate with itself, m. denotes a critical value of this product based on a
non-Newtonian model, ug denotes the plastic dynamic viscosity of non-Newtonian fluids and

Dy is the yield stress of the fluid. These assumptions mean that the velocity field is of the type U =

[u;(7,6 ), 0, 0]. The equations of continuity and momentum for this problem are:

oup(,0) 1 .4
—to a: +-u(7,6) =0, (14)
e ous(ro) 1 ap 1) [0%us(70) | 1 0us(8) | 1 0%us(8)  wi(O)] _
u*(r'g) a7 o oF tv (1 + B)[ oz Tr o 72 962 72 ] =0, (15)
10P  2v 1\ ou(7.6)
—E%+f—2(1+g)—ae =0, (16)

the auxiliary conditions of the problem JHFCF are

Our- .
ur~=Ur~, %=0 at 6 =0,
Uy = O, at 9 = K, (17)
where v = “73 is kinematic viscosity, p isthe pressure, and U, is the veloctity at the center line

of the channel at = 0. To remove the value of pressure p, the derivation of Equations (15) and

(16) with respect to 6, i respectively as:

%u;. %u; 1 3%p ( 1\ [ 83u; 1 9%u; 1 93u; 1 du;
_Ou g, 2w 10 142) [ om s e S - 22| = 1
a0 or Ui a0 or p 06 or tv + B/ Laoar2 + 1T 0601 + 72 963 72 00 0, ( 8)
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_1o 1ok, (1 +1) [Eﬁ—iaﬁ] =0, (19)

pador ' prae g/ Liabar 72 06
now by subtracting the two equations (18) from (19) we get

0%u; %u; _iaP BPuy 1 0%wy | 13%; | 3 0up] _
“aor  Wadar  or 25+ (1 + /3) [aearz v 2607 V72008 T 7200 ] =0, (20)

by integrating both sides with respect to - for continuity equation (14) in the form

£(0) =7u;(r,0), (21)
the dimensionless variables with the Equation (21), can make the problem dimensionless,

vy =L2, v =rus, =2, w(i8)=Lwm. (22)
From Equation (22), we find the required derivatives

duy _ y d¥(n) Puy _ y dP¥Mm) %y _ 2y d¥()

99  ix dn ’ 803 ~ Kk3F dn3 ’ arzo0 ki3 dn ’

duy -y %uy _ -y d¥(m) 0%u; _ 2y

or 12 Y, roe  «iz2  dn ’ a2 i3 ¥, (23)

now, from equation (20) and substituting the above derivative into the Equation (23) yield

2y? dw(n) 1\[ v a3¥@m , 4y a¥] _
— Iy )——v(1+E)[K +2 =0, (24)

K73 dn 373 dn3 K3 dn

after simplify the Equation (24) , we get

(1+ )d YW 4 2kR, W () LD d‘”’” +4r? (14 B) ‘”’(")( ) =0. (25)

B

The boundary condition of the problem dimensionless are

w() =1, d‘j—f}") =0, Ww1)=0. (26)
R, = L Reynolds number, can classified to two cases as:

e Divergent Channel :x >0 , U, >0,
e Convergent Channel :xk <0 , U; <0,

the values of the skin friction coefficient can be obtained by using

L (1) 27)

C — Ti’é
¥ Re dn

2
Ui

n=1
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/YK

u, (i ,0)

Figure 1 : Model diagram of Jeffery Hamel Flow of Casson fluid

4.Application of the Jeffery-Hamel Flow Problem.
The application of the PIA(1,1) by the steps of its algorithm to the nonlinear differential

Equation in order to find an analytical approximate solution, can be illustrated as follows;

vy dwm) dw(n)
(1+B) + 2KkR, W) W 4 4 (1+B) L=y, (28)

subject boundary condition are:

d‘P(O)

w) =1, =0, Ww(1)=0, (29)

the problem of the auxiliary perturbation parameter ¢ are

3
(lp( ), le(n) d ‘i’]gn)’ ) (1 n B) a3 ‘P(ﬂ) + 2exkRe Y (M) —— dlp(n) + 4ex? (1 + %) dlz—:]), (30)

perturbation expansions with only one corrections term are given as follows:

lpn+1 = lIJn + 8(lIJC)n' (31)
substituting Equation (31) into Equation (30), Taylor series with first order derivative terms about
e =0, yields

D(¥n, Pn,, ¥n', ¥n", 0) + €[ Dy, (Pc)n + Dy, (W) + Dyrr (Po)n' + De] =0, (32)

now, we apply Equation (30) to Equation (32) and we get the following derivatives:
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Dy = 2exR.W¥y,
Dy, = 2eKRoW, + 4ex? (1 + %)

Dy, = (1+5), 33)

D(¥p, Wh, W1, 0) = (142) W,
D, = 2KR Wy Wy, + 4ic? (1 + %) w!

by calculating all derivatives at € = 0 and substituting the results into (32) yields the following

linear ordinary differential equations

W' = =2 () — 2 (c0) KR Wy (MW (1) — 4128, (), (34)

B+1

assume that the initial condition,

2

Y,(m) =04 +0,m+ 03 %, (35)
where,

¥(0) =0y, ¥'(0) =0, ¥'(0) =03,

from the boundary condition(29), we get

Yo =1+o03 L (36)

now, we have obtained a preliminary condition for solving the problem that contains o3 is
unknown. we can obtain the value of o3 from the analytical approximate solution of Equation

(34) at n = 1. The analytical approximate solutions of the Equation (28) in the following

equations:
_ 1o _ 1 (8 2_1 (8B
l111—1+[ 03 120(1+B)R KO 3]n (B+1R K0'3+2KO'3)T], (37)
1 1 1 1
¥, =1+5050° _[12(1EB) KO3+ g K 03]“ s Kg“”E(%‘B)ReKB%
1 (B 2y L (P L 1 (B
_— | — —[———] R 2 6 _(_)R 3 2
120 <1+B) +180<1+B) K o3 + I5gg (g R 0s™
1 B \? 1 B 1 B\’
R N R 5 2__(_) RZ 4 2
560( +B) < 0s® 1n° ~ 350 (1+B) 0 Tao \T+p) e 3
B 2 B 3 31,10 11 LZ 2.4 _ 3
10800 ( +) K o3 12960 ( +) * 03> I [47520 (1+B) Re"K" 03
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1 (BVh3,.3 31,12 [t (BN h33_ 4] 14
+95040 (1+B) Re™x 03°Im [2620800 (1+B) Re“k% 03" (™. (38)

5. Results and Discussions.

In this section, the objective of the present study is to introduce the results of simulation for
velocity from application P 1A to obtain an analytical approximate solution of Jeffery Hamel flow
fluid. Moreover, we discuss the effect of numerous emerging parameters as Casson fluid parameter
B, Reynolds number R,, and open angle x on the velocity profile W(n). Testing the convergence of
values of constants a5 is tabulated in Tables (5)- (8) for both diverging and converging which can
be extracted from the boundary condition W¥(1) = 0. It can be shown that values of osare
convergent and being fixed in the fourth order of approximation. Effects of different parameters on
the coefficient of skin friction are given in Table (9). This table displays comparison between the
results presented and VPM, we can note that the solutions are well matched. As wall the magnitude
of the skin friction coefficient decreases with an increase in R,, 3, and x for diverging channel.
For converging channel, the magnitude of the skin friction coefficient increases with an increase in
R, and x while a decrease in the magnitude of the skin friction coefficient is found with an increase
in B. In Tables (10) - (13), the values of velocity profile W(n) in the domain for some values of n
are computed for different values of parameters. A comparison findings in which an outstanding
consensus is excellent agreement between the solutions for both converging and diverging
channels, are seen in theses Tables. Graphically, the influences of various parameters on the
velocity W(n)are plotted in Figures (2) and (3). The important effects of the present work are

displays in two cases as follows:
e Diverging channel.

Figures (2a) - (2c) are showing effects of channel angle x, Reynolds number R, and Casson
fluid parameter S respectively. for all these parameters, we have an almost equal effect on the
velocity profile W(n). That is, the velocity profile decreased by changes in k, R, and . The
maximal velocity near the middle of the channel is found. It is important to note that 8 gives a
basic Newtonian fluid velocity.

e Converging channel.

The results of the same parameters are depicted in Figures (3a) - (3c) for the converging
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channel. In this case, a very opposite behavior is observed in the velocity W(n) for k, R,

and . The effect of g is more significant in comparison with k, R,.

Table 5: The convergence of the values o3 for

R, = 100, B = 0.3.

Approximation Order O3 O3

n Kk =5° = —5O

-2.662059 -1.561842
2 -2.615389 -1.533696
3 -2.617581 -1.532479
4 -2.617523 -1.532444
5 -2.617524 -1.532444
6 -2.617524 -1.532444
7 -2.617524 -1.532444
8 -2.617524 -1.532444

Table 6: The convergence of the values o3 for R, =50, B = 0.4.

Approximation Order O3 03

n K =2° K =-—2°

1 -2.14062317 -1.87424934
2 -2.13810451 -1.87208670
3 -2.13812208 -1.87206348
4 -2.13813201 -1.87206332
5 -2.13813201 -1.87206332
6 -2.13813201 -1.87206332
7 -2.13813201 -1.87206332
8 -2.13813201 -1.87206332

(&) @& This article is an open access article distributed under 4
the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0 license)

(http://creativecommons.org/licenses/by-nc/4.0/).



Basrah Journal of Science

Vol. 39(1),37-55, 2021

Table 7: The convergence of the values o3 for R, =30, B=0.5

Approximation Order O3 03
n Kk=1° K=-—1°
-2.0475490960 -1.9544798460
2 -2.0472531070 -1.9542024530
3 -2.0472542390 -1.9542014070
4 -2.0472542360 -1.9542014050
5 -2.0472542360 -1.9542014050
6 -2.0472542360 -1.9542014050
7 -2.0472542360 -1.9542014050
8 -2.0472542360 -1.9542014050

Table 8: The convergence of the values o3 for R, =10, B = 0.5.

Approximation Order O3 O3

n K = 3° Kk =-3°

1 -2.0344764290 -1.9699579320
2 -2.0343157880 -1.9698413420
3 -2.0343162420 -1.9698410590
4 -2.0343162410 -1.9698410590
5 -2.0343162410 -1.9698410590
6 -2.0343162410 -1.9698410590
7 -2.0343162410 -1.9698410590
8 -2.0343162410 -1.9698410590
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w R. B A3 R.Cy[19] R.Cy
1° 50 0.3 -2.054587195 -8.491011 -8.4911010
3° 50 0.3 -2.169422542 -8.132965 -8.1332390
5 50 0.3 -2.292240285 -7.765948 -7.7663980
-1° 50 0.3 -1.947216335 -8.840078 -8.8399900
-3’ 50 0.3 -1.846819550 -9.180186 -9.1799280
-5 50 0.3 -1.752933827 -9.511377 -90.5109470
5 100 0.3 -2.617581485 -6.879197 -6.8798250
5 150 0.3 -2.983901230 -5.989193 -5.9892090
5 200 0.3 -3.393374625 -5.101456 -5.0994860
-5 100 0.3 -1.454410963 -10.363046 -10.709501
-5 150 0.3 -1.340394520 -11.197414 -11.194771
-5 200 0.3 -1.173470012 -12.012961 -12.006979
5 50 0.1 -2.113842436 -21.068544 -21.069045
5 50 0.5 -2.431945228 -5.1040820 -5.1044890
5 50 0.9 -2.635817684 -3.3286000 -3.3289020
-5 50 0.1 -1.901752215 -22.814960 -22.814574
-5 50 05 -1.651240676 -6.8482430 -6.8477740
-5 50 0.9 -15216913980 -5.0702750 -5.0697080

(&) @S This article is an open access article distributed under 48
the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0 license)

(http://creativecommons.org/licenses/by-nc/4.0/).



Basrah Journal of Science

Vol. 39(1),37-55, 2021

Table 10: Comparsion between PIA and VPM for R, = 100, x = 5° g = 0.3.

VPM[15]

PIA

VPM[15]

PIA

Y]

For Diverging Channel

For Converging Channel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.000000
0.986954
0.948339
0.885656
0.801219
0.697894
0.578809
0.447036
0.305319
0.155833
0.000000

1.000000
0.986959
0.948346
0.885670
0.801240
0.697923
0.578842
0.447070
0.305348
0.155851
0.000000

1.000000
0.986956
0.968947
0.928987
0.870919
0.792662
0.691628
0.564845
0.409171
0.221645
0.000000

1.000000
0.992313
0.968943
0.928978
0.870905
0.792643
0.691604
0.564819
0.409148
0.221629
0.000000

Table 11:Comparsion between PIA and RK4 for R, = 50, x = 2°, B = 0.4.

PIA RK4 PIA RK4
n For Diverging Channel For Converging Channel
0.0 1.000000 1.000000 1.000000 1.000000
0.1 0.989318 0.989318 0.990631 0.990631
0.2 0.957378 0.957378 0.962435 0.962435
0.3 0.904491 0.904491 0.915139 0.915139
0.4 0.831145 0.831145 0.848304 0.848304
0.5 0.737975 0.737975 0.761349 0.761349
0.6 0.625710 0.625710 0.653585 0.653585
0.7 0.495111 0.495111 0.524262 0.524262
0.8 0.346909 0.346909 0.372634 0.372634
0.9 0.181726 0.181726 0.198039 0.198039
1.0 0.000000 0.000000 0.000000 0.000000

(c5) D& | This article is an open access article distributed under
the terms and conditions of the Creative Commons Attribution-
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Table 12 :Comparison between PIA and RK4 for R, =30, k =1°% B =10.5.

PIA

RK4

PIA

RK4

For Diverging Channel

For Converging Channel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.000000
0.989766
0.959102
0.908110
0.836957
0.745860
0.635067
0.504847
0.355458
0.187122
0.000000

1.000000
0.989766
0.959102
0.908110
0.836957
0.745860
0.635067
0.504847
0.355458
0.187122
0.000000

1.000000
0.990226
0.960871
0.911835
0.842960
0.754037
0.644821
0.515049
0.364461
0.192832
0.000000

1.000000
0.990226
0.960871
0.911835
0.842960
0.754037
0.644821
0.515049
0.364461
0.192832
0.000000

Table 13 :Comparison between PIA and RK4 for R, = 10, k = 6°, B = 0.4.

PIA

RK4

PIA

RK4

For Diverging Channel

For Converging Channel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.000000
0.989560
0.958309
0.906441
0.834266
0.742188
0.630680
0.500245
0.351377
0.184517
0.000000

1.000000
0.989560
0.958309
0.906441
0.834266
0.742188
0.630680
0.500245
0.351377
0.184517
0.000000

1.000000
0.990351
0.961353
0.912849
0.844591
0.756250
0.647446
0.517773
0.366840
0.194318
0.000000

1.000000
0.990351
0.961353
0.912849
0.844591
0.756250
0.647446
0.517773
0.366840
0.194318
0.000000
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Figure 2: The curves of the W(n) (a) several values of k, (b) several values of R, and (c) several
values of 3.
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Figure 3: The curves of the W(n) (a) several values of k, (b) several values of R, and (c) several
values of 3.
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Conclusions

Non-Newtonian Jeffery Hamel flow of Casson fluid problem is presented and solved
using PIA technique. The figures that presented to study the behavior of emerging physical
parameters showed an increase in values of parameters and the behavior of the velocity in
the widening channel is opposite to in the narrowing channel. In general, similarity
transformation is an important role to transform the non-linear partial differential equations of
Jeffery Hamel fluid flow problems for all data into non-linear ordinary differential equations
with boundary conditions that found are easy to solve by PIA. Finally, the numerical values
for skin friction for varying Reynolds number, Casson fluid parameter, and open angle are

discussed.
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