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Abstract  

       Perturbation iteration algorithm  (PIA)  is used to solve Jeffery Hamel flow 

problem of non-Newtonian fluid which is Casson  fluid  (JHFCF) to simplify a 

suitable  transformation  of  similarities that applied to obtain a non- linear ordinary 

differential equation. The resulting equation is solved by PIA and numerically using 

fourth order Runge  Kutta (RK4). Both solutions are compared by the variance of the 

parameter method  (VPM)  in order to check the efficacy of the provided  (PIA) 

approach. For both diverging and converging channels, the influences of the 

parameters are demonstrated by graphical simulation. 
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1. Introduction:  

      The flow through tapered walls has gained a lot of interest because of its wide range of 

applications in the aerospace, chemical, civil, environmental, bio- mechanical engineering, and 

mechanical. The blood is considered as a kind of flow in the human body where capillaries and 

arteries are linked to each other. In addition, these applications are also related in to the flow in 

channels and rivers. A mathematical model of the flows through non parallel walls was firstly 

introduced by Jeffrey[1] and Hamel  [2]. These types of flows are known as the Jeffery Hamel 

flows of Casson fluid problem. Extensively, JHFCFP  has been discussed by several authors in 

many types of research   [3–7].   Because of the complex rheological nature of non-Newtonian 

fluids, there is no single model that can be used to simulate the whole  class. Therefore, many 

non-Newtonian flow models have been presented over the years. Casson fluid is one of these 

models that exhibit blood type behavior [8, 9]. Inherently, most of the models that  describing a 

physical problem are accomplished in the form of non- linearity. Therefore, the exact solution is 

not found, furthermore approximation techniques are developed to solve these complex problems 

including several analytical methods such as domain decomposition method  (ADM),  variance 

of the parameter method (VPM ) and perturbation iteration algorithm( PIA) [10–15]. The 

objective of this paper is the search for analytical approximate solution for the Non-linear 

problem which describes incompressible viscous Jeffery Hamel flow of Casson Fluid. In 

addition, we studies PIA is based on algorithm which are classified with respect to the number of 

terms in the perturbation expansion n1 and the degrees of derivatives in the Taylor expansions 

𝑛2.  However, this method has been named as PIA (n1, n2), n1, n2 = 1,2,…. P IA (n1, 

𝑛2) have a famous  technique for solving problems in different fields of science  and engineering 

 In this study,  PIA  is used to solve a rather complex problem JHFP in diverging  and 

converging channels  to  find analytical  approximate solution and  known the  effect of physical 

 parameters  on  these solutions. The main  advantage  of  this  method is  that, it reduces  the 

computational work while still maintaining  a higher level of accuracy. In addition, PIA (1,1) is 

analyze to give the sufficient conditions for convergence of the approximation series solution 

generated by PIA.                                                                                                                            
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2. Perturbation  Iteration  Algorithm       

       Perturbation Iteration  techniques are a  class of  analytical methods and important for 

determining approximate solutions of nonlinear algebraic  equations, differential equations and 

integral-differential equations. They are useful for demonstrating, predicting, and describing 

phenomena in vibrating systems that are caused by nonlinear effects. In mathematics, perturbation  

methods comprise mathematical methods for finding an approximate solution to a problem, by 

starting from the exact solution of a related simpler problem.  Perturbation   is widely used when 

the problem at hand does not have a known exact solution, but can be expressed as a small change 

to a known solvable problem. Perturbation methods is used in a wide range of Physical fields. To  

explain  the idea of Perturbation  Iteration  Algorithm(1,1), consider the nonlinear ordinary  

differential equation as form [22]: 

𝐷 (𝜂, Ψ(𝜂),    
𝑑Ψ

𝑑𝜂
,

𝑑2Ψ

𝑑𝜂2  ,
𝑑3Ψ

𝑑𝜂3  , … ,
𝑑(𝑛−1)Ψ

 𝑑𝜂(𝑛−1)  ,
𝑑(𝑛)Ψ 

𝑑𝜂(𝑛) ) = 0,                                        (1) 

where 𝐷 is a function of  Ψ and its drivatives, Ψ is an unkown function and denote  𝜂  spactial 

dependent  variable.  In  Equation (1),  we  can add auxiliary perturbation parameter  𝜀  as  shown 

in the  following equation: 

𝐷 (𝜂, 𝛹(𝜂),    
𝑑𝛹

𝑑𝜂
,

𝑑2𝛹

𝑑𝜂2
 ,

𝑑3𝛹

𝑑𝜂3
 , … ,

𝑑(𝑛−1)𝛹

 𝑑𝜂(𝑛−1)  ,
𝑑(𝑛)𝛹 

𝑑𝜂(𝑛) ) = 0,                                                              (2) 

 rewriting  the Equation (1) as the following;  

 𝐷 (𝜂, Ψ𝑚+1 ,   
𝑑Ψ𝑚+1

𝑑𝜂
,

𝑑2Ψ𝑚+1

𝑑𝜂2  , … ,
𝑑(𝑛−1)Ψ𝑚+1

𝑑𝜂(𝑛−1)  ,
𝑑(𝑛)Ψ𝑚+1

𝑑𝜂(𝑛)  , 𝜀 ) = 0,                                  (3)        

where, m represents the 𝑚𝑡ℎ iteration with defined perturbation expansions with correction term as 

follow; 

Ψ1 = Ψ0 + 𝜀(Ψ𝑐)0, 

Ψ2 = Ψ1 + 𝜀(Ψ𝑐)1, 

Ψ3 = Ψ2 + 𝜀(Ψ𝑐)2, 

⋮ 

Ψ𝑚+1 = Ψ𝑚 + 𝜀(Ψ𝑐)𝑚 ,                                                                                                                   (4)  

where, 𝜀  is a small perturbation parameter and  Ψ𝑐 is the correction term in the perturbation 

expansion. Now Substituting (4) in (3), we obtain 
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𝐷(Ψ𝑚(𝜀) + 𝜀(Ψ𝑐)𝑚,, Ψ𝑚
′ (𝜂) + 𝜀(Ψ𝑐)𝑚

′ , Ψ𝑚
′′ (𝜂) + 𝜀(Ψ𝑐)𝑚

′′ , Ψ𝑚
′′′(𝜂) + 𝜀(Ψ𝑐)𝑚

′′′, … , Ψ𝑚
𝑛−1(𝜂) +

𝜀(Ψ𝑐)𝑚
𝑛−1,   Ψ𝑚

𝑛 (𝜂) + 𝜀(Ψ𝑐)𝑚
𝑛 , 𝜀) = 0,                                                                                          (5) 

in the next step we take the Taylor series expansion   for the first order derivative in the 

neighborhood of  𝜀 = 0,  yields 

𝐷 (𝜂, Ψ𝑚+1(𝜂),   
𝑑Ψ𝑚+1

𝑑𝜂
,

𝑑2Ψ𝑚+1

𝑑𝜂2
, … ,

𝑑(𝑛−1)Ψ𝑚+1

𝑑𝜂(𝑛−1) ,
𝑑(𝑛)Ψ𝑚+1

𝑑𝜂(𝑛) , 𝜀) + 𝜀
𝑑𝐷

𝑑Ψ𝑚
  . (Ψ𝑐)𝑚|

𝜀=0
+        

 𝜀
𝑑𝐷

𝑑Ψ𝑚
′  . (Ψ𝑐)𝑚

′ |
𝜀=0

+ ⋯ + 𝜀
𝑑𝐷

𝑑Ψ𝑚
(𝑛−1)  . (Ψ𝑐)𝑚

(𝑛−1)
|

𝜀=0

+ 𝜀
𝑑𝐷

𝑑𝛹𝑚
(𝑛)  . (𝛹𝑐)𝑚

(𝑛)
|

𝜀=0

+ 𝜀
𝑑𝐷

𝑑𝜀
= 0,             (6)                                                           

rearranging Equation (6) gives 

(Ψ𝑐)𝑚
(𝑛)

= −
−𝐷

𝜀 
𝑑𝐷

𝑑𝛹𝑚
(𝑛) 

−

𝑑𝐷

𝑑Ψ𝑚
 

𝑑𝐷

𝑑𝛹𝑚
(𝑛) 

  . (Ψ𝑐)𝑚 −

𝑑𝐷

𝑑Ψ𝑚
′  

𝑑𝐷

𝑑𝛹𝑚
(𝑛) 

 . (Ψ𝑐)𝑚
′ − ⋯ −

𝑑𝐷

𝑑𝛹𝑚
(𝑛−1) 

𝑑𝐷

𝑑𝛹𝑚
(𝑛) 

 . (Ψ𝑐)𝑚
(𝑛−1)

−
𝑑𝐷

𝑑𝜀
 

𝑑𝐷

𝑑𝛹𝑚
(𝑛) 

.          (7)                                                                                            

Now,   all calculations in Equation (7) are performed  at 𝜀 = 0, results in Equation (7) get ordinary 

differential equation.  This  ordinary differential equation is solved   to obtain (Ψ𝑐)𝑚(𝜂). In order  

to find the first correction term,  Ψ0  is a trial  function satisfying  the initial condition. Substituting 

Ψ0    into Eq. (7),    the first order problem  is:    

(𝛹𝑐)0
(𝑛)

= −
−𝐷

𝜀 
𝑑𝐷

𝑑𝛹0
(𝑛) 

−

𝑑𝐷

𝑑𝛹0
 

𝑑𝐷

𝑑𝛹0
(𝑛) 

  . (𝛹𝑐)0 −

𝑑𝐷

𝑑𝛹0
′  

𝑑𝐷

𝑑𝛹0
(𝑛) 

 . (𝛹𝑐)0
′ − ⋯ −

𝑑𝐷

𝑑𝛹0
(𝑛−1) 

𝑑𝐷

𝑑𝛹0
(𝑛) 

 . (𝛹𝑐)0
(𝑛−1)

−
𝑑𝐷

𝑑𝜀
 

𝑑𝐷

𝑑𝛹0
(𝑛) 

,              (8) 

thus, we can express  the approximate solutions in the following way, firstly  can be defined: 

Ψ0 = 𝐶0,  (Ψ𝑐)𝑚 = 𝐶𝑚+1,                                                                                                                (9) 

and  the other solutions  can be defined  in the following iterations  

Ψ0 = 𝐶0,  

Ψ1 = Ψ0 + (Ψ𝑐)0 = 𝐶0 + 𝐶1,  

Ψ2 = Ψ1 + (Ψ𝑐)1 = 𝐶0 + 𝐶1 + 𝐶2, 

⋮ 

Ψ𝑚+1 = Ψ𝑛 + (Ψ𝑐)𝑚 = 𝐶0 + 𝐶1 + 𝐶2 + ⋯ + 𝐶𝑚+1 = ∑ 𝐶𝑖
𝑚+1
𝑖=0 .                                                  (10) 

Consequently, the value of  (Ψ𝑐)𝑚+1  are  substituted in  Equation (4) to obtain  on  Ψ𝑚(𝜂).  It is 

the approximate-analytical solution required, which is in the form of the power series. The solution 

of  Equation (2) can be represented as: 

  Ψ(𝜂) = lim
𝑛→∞

Ψ𝑚+1 = ∑ 𝐶𝑖
∞
𝑖=0 . 
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3. Mathematical  Formulation 

      Consider  the flow of  a Casson fluid initiated due to source  or sink  at the intersection of two 

rigid plane walls. The angle between the walls is taken as  2𝜅 The flow is assumed to be symmetric  

and purely radial  𝑢𝑟̇  as shown in Figure (1). The model of  fluid flow composed of the continuity 

equation describing conservation of mass,  momentum equation derived from Newton second law. 

These equations are defined mathematically as follows [15] : 

∇ .  𝑈 = 0 ,                                                                                                                                      (11) 

ρ [ 
𝜕𝑈

𝜕𝑡
+ (𝑈. ∇𝑈)] =  −∇𝑝 + ∇𝜏𝑖𝑗.                                                                                                (12)  

Such that 𝑈 is the fluid  velocity,  ∇ is the derivative operator ( gradient  (,  𝜌  is the fluid density, 

and  𝑝 is the hydrodynamic pressure. The following equation shows the viscosity of the liquid [11] 

𝜏𝑖𝑗 = 2 (𝜇𝐵 +
𝑝𝑦

√2𝜋
) 𝑐𝑖𝑗 ,    𝜋 ≠ 𝜋𝑐,                                                                                                   (13) 

where  𝜋 = 𝑐𝑖𝑗𝑐𝑖𝑗  with  𝑐𝑖𝑗  being the (i , j) the components of the deformation rate, 𝜋𝑐  is the 

product of the deformation rate with itself,  𝜋𝑐 denotes a critical value of this product based on a 

non-Newtonian model,   𝜇𝐵   denotes the plastic dynamic viscosity of non-Newtonian fluids and  

𝑝𝑦 is the yield stress of the fluid. These assumptions mean that the velocity field is of the type 𝑈 =

[𝑢𝑟̇(𝑟̇, 𝜃̇ ), 0, 0]. The equations of continuity and momentum for this problem are: 

∂𝑢𝑟̇(𝑟̇,𝜃̇)

∂ṙ
+

1

𝑟
𝑢𝑟̇(𝑟̇, 𝜃̇) = 0,                                                                                                                (14) 

−𝑢𝑟̇(𝑟̇, 𝜃̇)
𝜕𝑢𝑟̇(𝑟̇,𝜃̇)

𝜕𝑟̇
−

1

𝜌
  

𝜕𝑝

𝜕𝑟̇
+ 𝜈 (1 +

1

𝛽
) [

𝜕2𝑢𝑟̇(𝑟̇,𝜃̇)

𝜕𝑟2 +
1

𝑟̇
 
𝜕𝑢𝑟̇(𝑟̇,𝜃̇)

𝜕𝑟̇
+

1

𝑟̇2

𝜕2𝑢𝑟̇(𝑟̇,𝜃̇)

𝜕𝜃2 −
𝑢𝑟̇(𝑟̇,𝜃̇)

𝑟̇2 ] = 0,         (15) 

  −
1

𝜌𝑟̇

∂P

∂θ
+

2v

𝑟̇2 (1 +
1

β
)

∂𝑢𝑟̇(𝑟̇,𝜃̇)

∂θ
= 0,                                                                                                 (16)                    

the auxiliary conditions of the problem   JHFCF  are  

𝑢𝑟̇ = 𝑈𝑟̇ ,      
𝜕𝑢𝑟̇

𝜕𝜃
= 0      𝑎𝑡     𝜃̇ = 0,  

                          𝑢𝑟̇ = 0,     at      𝜃̇ = 𝜅,                                                                                             (17) 

where 𝜈 =
𝜇𝐵

𝜌
  is kinematic viscosity,  𝑝   is the pressure,  and  𝑈𝑟̇ is  the veloctity at the center line  

of the channel at 𝑟̇ = 0. To remove the value of  pressure  𝑝, the derivation of  Equations (15) and 

(16) with respect to  𝜃̇,  𝑟̇  respectively as: 

−
∂2𝑢𝑟̇

∂θ̇ ∂𝑟̇
 − 𝑢𝑟̇

∂2𝑢𝑟̇

∂θ̇ ∂𝑟̇
 −

1

𝜌

𝜕2𝑝

∂θ̇ ∂𝑟̇
+ 𝜈 (1 +

1

𝛽
) [

𝜕3𝑢𝑟̇

∂θ̇𝜕𝑟̇2
+

1

𝑟̇
 

𝜕2𝑢𝑟̇

𝜕𝜃̇𝜕𝑟̇
+

1

𝑟̇2

𝜕3𝑢𝑟̇

𝜕𝜃̇3
−

1

𝑟̇2

∂𝑢𝑟̇

∂θ̇
 ] = 0,                      (18) 
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−
1

𝜌

∂2P

∂θ̇ ∂𝑟̇
+

1

𝜌𝑟̇

∂P

∂θ̇
+ 𝜈 (1 +

1

β
) [

2

𝑟̇

∂2𝑢𝑟̇

∂θ̇ ∂𝑟̇
−

4

𝑟̇2

∂𝑢𝑟̇

∂𝜃̇
] = 0,                                                                       (19)  

now by subtracting the two equations (18) from (19) we get 

−
𝜕2𝑢𝑟̇

∂θ̇ ∂𝑟̇
 − 𝑢𝑟̇

𝜕2𝑢𝑟̇

∂θ̇ ∂𝑟̇
  −

1

𝜌𝑟̇

𝜕𝑃

𝜕𝜃̇
+ 𝜈 (1 +

1

𝛽
) [

𝜕3𝑢𝑟̇

∂θ̇𝜕𝑟̇2 −
1

𝑟̇
 

𝜕2𝑢𝑟̇

𝜕𝜃̇𝜕𝑟̇
+

1

𝑟̇2

𝜕3𝑢𝑟̇

𝜕𝜃̇3 +
3

𝑟̇2

∂𝑢𝑟̇

𝜕𝜃̇
 ] = 0,         (20) 

by integrating both sides with respect to 𝑟̇  for continuity equation (14) in the form 

𝑓(𝜃̇) = 𝑟̇𝑢𝑟̇(𝑟̇, 𝜃̇),                                                                                                                          (21) 

 the dimensionless variables with  the Equation (21),  can  make the problem dimensionless, 

Ψ(𝜂) =
𝑓(𝜃)

𝑟̇𝑈𝑟̇
,          𝛾 = 𝑟̇𝑈𝑟̇ ,               𝜂 =

𝜃̇

𝜅
 ,           𝑢𝑟̇(𝑟̇, 𝜃̇) =

𝛾

𝑟̇
 Ψ(𝜂).                                         (22)  

From Equation (22),  we find the  required derivatives 

∂uṙ

∂θ
=

γ

ṙκ
 
dΨ(η)

dη
,                         

∂3uṙ

∂θ3 =
γ

κ3ṙ
 
d3Ψ(η)

dη3 ,                        
∂3uṙ

∂r2 ∂θ
=

2γ

κṙ3

dΨ(η)

dη
,  

∂uṙ

∂r
  =

−γ

ṙ2  Ψ(η),                       
∂2uṙ

∂ṙ ∂θ
 =

−γ

κṙ2  
dΨ(η)

dη
,                         

∂2uṙ

∂ṙ2 =
2γ

ṙ3  Ψ(η) ,           (23) 

now, from equation (20) and substituting the above derivative into the Equation (23) yield 

−
2𝛾2

𝜅𝑟̇3 Ψ(𝜂)
𝑑Ψ(𝜂)

𝑑𝜂
− 𝜈 (1 +

1

𝛽
) [

𝛾

𝜅3𝑟̇3

𝑑3Ψ(𝜂)

𝑑𝜂3 +
4𝛾

𝜅𝑟̇3

𝑑Ψ(𝜂)

𝑑𝜂
] = 0,                                     (24)  

after simplify the Equation (24) , we get         

 (1 +
1

𝛽
)

𝑑3Ψ(𝜂)

𝑑𝜂3 + 2𝜅𝑅𝑒Ψ (𝜂)
𝑑Ψ(𝜂)

𝑑𝜂
+ 4𝜅2 (1 +

1

𝛽
)

𝑑Ψ(𝜂)

𝑑𝜂
(𝜂) = 0.                                        (25) 

 The boundary condition of the problem dimensionless are   

Ψ(0) = 1,            
dΨ(0)

dη
= 0,         Ψ(1) = 0.                                                                               (26) 

𝑅𝑒 =
𝑟̇𝑈𝑟̇ 𝜅

𝑣
  is  Reynolds number,  can classified to two cases as: 

• Divergent  Channel  : 𝜅 > 0    ,    𝑈𝑟̇  > 0,  

• Convergent Channel : 𝜅 < 0    ,   𝑈𝑟̇  < 0, 

the values of  the skin friction coefficient can be obtained by using 

𝐶Ψ =
𝜏𝑟̇𝜃̇  

𝑈𝑟̇
2 |

𝜂=1

=
1

𝑅𝑒
 (1 +

1

𝛽
)

𝑑Ψ(1)

𝑑𝜂
,                                                                                                (27) 
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Figure 1 : Model diagram of Jeffery Hamel Flow of Casson fluid 

 

4.Application of the Jeffery-Hamel Flow Problem. 

       The application of the PIA(1,1) by the steps of its algorithm  to the nonlinear differential 

Equation  in order to find  an  analytical approximate solution, can be illustrated as follows; 

(1 +
1

β
)

d3Ψ(η)

dη3 + 2κRe Ψ(η)
dΨ(η)

dη
+ 4κ2 (1 +

1

β
)

dΨ(η)

dη
= 0,                                                      (28) 

subject  boundary condition are:   

Ψ(0) = 1 ,
dΨ(0)

dη
= 0,        Ψ(1) = 0,                    (29) 

the problem of the auxiliary perturbation parameter 𝜀 are  

D (Ψ(η),
dΨ(η)

dη
,

d3Ψ(η)

dη3 , ε) = (1 +
1

β
)

d3Ψ(η)

dη3 + 2εκRe Ψ(η)
dΨ(η)

dη
+ 4εκ2 (1 +

1

β
)

dΨ(η)

dη
,            (30)                                                                                        

perturbation expansions with only one corrections  term are given as follows: 

Ψn+1 = Ψn + ε(ΨC)n,                                                                                                                     (31)                                                                                                   

substituting Equation (31) into Equation (30), Taylor series with first order derivative terms  about 

𝜀 = 0,   yields  

D(Ψn, Ψn
′ , , Ψn

′′, Ψn
′′′, 0) + ε[ DΨn

(ΨC)n + DΨ′
n

 (ΨC)𝑛
′  +  DΨ′′′

n
(ΨC)𝑛

′′′ + Dε]  = 0,                 (32)                                                                                                      

 now,  we apply Equation (30) to Equation (32) and we get the following derivatives: 
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DΨn
= 2εκReΨn

′ ,                                 

DΨ′
n

= 2εκReΨn + 4εκ2 (1 +
1

β
) ,

DΨ′′′
n

= (1 +
1

β
),                              

D(Ψn, Ψn
′ , Ψn

′′′, 0) = (1 +
1

β
) Ψn

′′′,

Dε = 2κReΨnΨn
′ + 4κ2 (1 +

1

β
) Ψn

′  ,

                         (33) 

by calculating all derivatives at ε = 0 and substituting the results into (32) yields the following 

linear ordinary differential equations  

(Ψc)𝑛
′′′ = −

1

ε
Ψn

′′′ (η) − 2 (
β

β+1
) κReΨn

′(η)Ψn(η) − 4κ2Ψn
′(η),                          (34) 

assume that the initial condition,   

Ψο(η) = σ1 + σ2η + σ3
η2

2!
 ,                                                                                           (35) 

where,  

Ψ(0) = σ1 , Ψ′(0) = σ2,   Ψ′′(0) = σ3 ,  

 from the boundary condition(29), we get  

Ψο = 1 + σ3
η2

2
,                                                                                                              (36) 

now,  we have obtained a preliminary condition for solving the problem that  contains 𝜎3 is 

unknown.  we  can obtain the value of 𝜎3  from  the analytical  approximate  solution of Equation 

(34) at  𝜂 = 1.  The analytical approximate solutions  of the Equation (28) in the   following 

equations:    
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                 +
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1
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 (

β

1+β
)

3

Re
3κ3 σ3
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                 ⋮ 

 

5. Results and Discussions. 

      In this section, the objective of the present study is to introduce the results of simulation for 

velocity from application P IA to obtain an analytical approximate solution of Jeffery Hamel flow 

fluid. Moreover, we discuss the effect of numerous emerging parameters as Casson fluid parameter 

𝛽, Reynolds number 𝑅𝑒, and open angle κ on the velocity profile Ψ(𝜂). Testing the convergence of 

values of constants 𝜎3 is tabulated in Tables (5)- (8) for both diverging and converging which can 

be extracted from the boundary condition  Ψ(1) = 0. It can be shown that values of 𝜎3are 

convergent and being fixed in the fourth order of approximation. Effects of different parameters on 

the coefficient of skin friction are given in Table (9). This table displays comparison between the 

results presented and VPM, we can note that the solutions are well matched. As wall the magnitude 

of the skin friction coefficient decreases with an increase in 𝑅𝑒 , 𝛽, and 𝜅 for diverging channel. 

For converging channel, the magnitude of the skin friction coefficient increases with an increase in 

𝑅𝑒 and κ while a decrease in the magnitude of the skin friction coefficient is found with an increase 

in β. In Tables (10) - (13), the values of velocity profile  Ψ(𝜂) in the domain for some values of 𝜂 

are computed for different values of parameters. A comparison findings in which an outstanding 

consensus is excellent agreement between the solutions for both converging and diverging 

channels, are seen in theses Tables. Graphically, the influences of various parameters on the 

velocity Ψ(𝜂)are plotted in Figures (2) and (3). The important effects of the present work are 

displays in two cases as follows: 

• Diverging channel. 

           Figures (2a) - (2c) are showing effects of channel angle 𝜅, Reynolds number 𝑅𝑒 and Casson    

     fluid parameter 𝛽 respectively. for all these parameters, we have an almost equal effect on the  

    velocity profile   Ψ(𝜂). That is, the velocity profile decreased by changes in 𝜅, 𝑅𝑒 and  𝛽. The 

    maximal velocity near the middle of the channel is found. It is important to note that 𝛽 gives a  

    basic Newtonian fluid velocity. 

• Converging channel. 

          The results of the same parameters are depicted in Figures (3a) - (3c) for the converging     
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     channel. In this case, a very opposite behavior is observed in the velocity Ψ(𝜂) for 𝜅,  𝑅𝑒,  

     and 𝛽. The effect of  𝛽 is more significant in comparison with 𝜅, 𝑅𝑒.  

 

Table 5: The convergence of the values  𝜎3  𝑓𝑜𝑟  Re = 100 , β = 0.3. 

Approximation Order  𝜎3  𝜎3 

𝜂    𝜅 = 5𝜊  𝜅 = −5𝜊 

1 -2.662059 -1.561842 

2 -2.615389 -1.533696 

3 -2.617581 -1.532479 

4 -2.617523 -1.532444 

5 -2.617524 -1.532444 

6 -2.617524 -1.532444 

7 -2.617524 -1.532444 

8 2.617524- 1.532444- 

 

 

Table 6: The convergence of the values  𝜎3   𝑓𝑜𝑟  Re = 50 ,   β = 0.4. 

Approximation Order        𝜎3       𝜎3 

𝜂      𝜅 = 2𝜊    𝜅 = −2𝜊 

1 -2.14062317 -1.87424934 

2 -2.13810451 -1.87208670 

3 -2.13812208 -1.87206348 

4 -2.13813201 -1.87206332 

5 -2.13813201 -1.87206332 

6 -2.13813201 -1.87206332 

7 -2.13813201 -1.87206332 

8 2.13813201- 1.87206332- 
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Table 7: The convergence of the values  𝜎3  𝑓𝑜𝑟  Re = 30 , β = 0.5 

Approximation Order           𝜎3         𝜎3 

𝜂        𝜅 = 1𝜊      𝜅 = −1𝜊 

1 -2.0475490960 -1.9544798460 

2 -2.0472531070 -1.9542024530 

3 -2.0472542390 -1.9542014070 

4 -2.0472542360 -1.9542014050 

5 -2.0472542360 -1.9542014050 

6 -2.0472542360 -1.9542014050 

7 -2.0472542360 -1.9542014050 

8 2.0472542360- 1.9542014050- 

 

 

 

Table 8: The convergence of the values  𝜎3  𝑓𝑜𝑟  Re = 10 , β = 0.5. 

Approximation Order         𝜎3        𝜎3 

𝜂      𝜅 = 3𝜊      𝜅 = −3𝜊 

1 -2.0344764290 -1.9699579320 

2 -2.0343157880 -1.9698413420 

3 -2.0343162420 -1.9698410590 

4 -2.0343162410 -1.9698410590 

5 -2.0343162410 -1.9698410590 

6 -2.0343162410 -1.9698410590 

7 -2.0343162410 -1.9698410590 

8 2.0343162410- 1.9698410590- 
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Table 9: The values of skin friction coefficient  (1 +
1

𝛽
) Ψ′(1) for various parameters. 

   𝜔         𝑅𝑒        𝛽              𝜆3                   𝑅𝑒𝐶Ψ[15]                  𝑅𝑒𝐶Ψ                    

   1°       50        0.3     -2.054587195        -8.491011             -8.4911010 

   3°       50        0.3     -2.169422542        -8.132965             -8.1332390 

   5°       50        0.3     -2.292240285        -7.765948             -7.7663980 

−1°       50       0.3     -1.947216335        -8.840078             -8.8399900 

−3°       50       0.3     -1.846819550        -9.180186             -9.1799280 

−5°       50       0.3     -1.752933827        -9.511377             -9.5109470 

   5°       100     0.3     -2.617581485        -6.879197             -6.8798250 

   5°       150     0.3     -2.983901230        -5.989193             -5.9892090 

   5°       200     0.3     -3.393374625        -5.101456             -5.0994860 

−5°      100     0.3      -1.454410963       -10.363046            -10.709501 

−5°      150     0.3      -1.340394520       -11.197414            -11.194771 

−5°      200     0.3     -1.173470012        -12.012961            -12.006979 

   5°       50      0.1      -2.113842436       -21.068544            -21.069045 

   5°       50      0.5      -2.431945228       -5.1040820             -5.1044890 

   5°       50      0.9      -2.635817684       -3.3286000             -3.3289020 

−5°       50      0.1      -1.901752215       -22.814960             -22.814574 

−5°       50      0.5      -1.651240676       -6.8482430             -6.8477740 

−5°        50      0.9     -1.5216913980      -5.0702750             -5.0697080 
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Table 10: Comparsion between PIA and VPM   for 𝑅𝑒 = 100, 𝜅 = 50, 𝛽 = 0.3. 

              VPM[15]             PIA                    VPM[15]                 PIA 

𝜂             For Diverging Channel                 For Converging Channel 

0.0         1.000000           1.000000             1.000000               1.000000 

0.1         0.986954           0.986959             0.986956               0.992313 

0.2         0.948339           0.948346             0.968947               0.968943 

0.3         0.885656           0.885670             0.928987               0.928978 

0.4         0.801219           0.801240             0.870919               0.870905 

0.5         0.697894           0.697923             0.792662               0.792643 

0.6         0.578809           0.578842             0.691628               0.691604 

0.7         0.447036           0.447070             0.564845               0.564819 

0.8         0.305319           0.305348             0.409171               0.409148 

0.9         0.155833           0.155851             0.221645               0.221629 

1.0         0.000000           0.000000             0.000000               0.000000 

 

 

 

Table 11:Comparsion between PIA and RK4 for 𝑅𝑒 = 50, 𝜅 = 20,   𝛽 = 0.4. 

                                PIA                   RK4                        PIA                         RK4                                               

𝜂               For Diverging Channel                   For Converging Channel 

0.0         1.000000           1.000000             1.000000               1.000000 

0.1         0.989318           0.989318             0.990631               0.990631 

0.2         0.957378           0.957378             0.962435               0.962435 

0.3         0.904491           0.904491             0.915139               0.915139 

0.4         0.831145           0.831145             0.848304               0.848304 

0.5         0.737975           0.737975             0.761349               0.761349 

0.6         0.625710           0.625710             0.653585               0.653585 

0.7         0.495111           0.495111             0.524262               0.524262 

0.8         0.346909           0.346909             0.372634               0.372634 

0.9         0.181726           0.181726             0.198039               0.198039 

1.0         0.000000           0.000000             0.000000               0.000000 
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Table 12 :Comparison between PIA and RK4 for 𝑅𝑒 = 30 , 𝜅 = 10, 𝛽 = 0.5 . 

               PIA RK4 PIA RK4 

𝜂 For Diverging Channel For Converging Channel 

0.0 1.000000 1.000000 1.000000 1.000000 

0.1 0.989766 0.989766 0.990226 0.990226 

0.2 0.959102 0.959102 0.960871 0.960871 

0.3 0.908110 0.908110 0.911835 0.911835 

0.4 0.836957 0.836957 0.842960 0.842960 

0.5 0.745860 0.745860 0.754037 0.754037 

0.6 0.635067 0.635067 0.644821 0.644821 

0.7 0.504847 0.504847 0.515049 0.515049 

0.8 0.355458 0.355458 0.364461 0.364461 

0.9 0.187122 0.187122 0.192832 0.192832 

1.0 0.000000 0.000000 0.000000 0.000000 

 

Table 13  :Comparison between PIA  and RK4  for 𝑅𝑒 = 10, 𝜅 = 60,   𝛽 = 0.4. 

PIA RK4 PIA RK4 

𝜂 For Diverging Channel For Converging Channel 

0.0 1.000000 1.000000 1.000000 1.000000 

0.1 0.989560 0.989560 0.990351 0.990351 

0.2 0.958309 0.958309 0.961353 0.961353 

0.3 0.906441 0.906441 0.912849 0.912849 

0.4 0.834266 0.834266 0.844591 0.844591 

0.5 0.742188 0.742188 0.756250 0.756250 

0.6 0.630680 0.630680 0.647446 0.647446 

0.7 0.500245 0.500245 0.517773 0.517773 

0.8 0.351377 0.351377 0.366840 0.366840 

0.9 0.184517 0.184517 0.194318 0.194318 

1.0 0.000000 0.000000 0.000000 0.000000 
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  (𝑎)  𝛽 = 0.3 , 𝑅𝑒 = 100                                                        (𝑏)  𝛽 = 0.3 ,   𝜅 = 5° 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     (𝑐)  𝑅𝑒 = 100 ,    𝜅 = 5° 

Figure 2: The curves of the  Ψ(𝜂) (a) several values of 𝜅, (b) several values of 𝑅𝑒 and (c) several 

values of 𝛽. 
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  (𝑎)  𝛽 = 0.3, 𝑅𝑒 = 100                                                                         (𝑏)  𝛽 = 0.3, 𝜅 = −5° 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     (𝑐)  𝑅𝑒 = 100, 𝜅 = −5° 

Figure 3: The curves of the  Ψ(𝜂) (a) several values of 𝜅, (b) several values of 𝑅𝑒 and (c) several 

values of 𝛽. 
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Conclusions 

            Non-Newtonian  Jeffery Hamel flow of  Casson fluid  problem is presented and solved  

using  PIA technique.  The figures that presented to study the behavior of emerging physical 

parameters showed  an increase  in  values of parameters and  the behavior of the velocity in 

the widening channel is opposite to in the narrowing channel. In general,  similarity 

transformation is an important role to transform the non-linear partial differential equations of  

Jeffery Hamel fluid flow problems for all data into  non-linear ordinary differential equations 

with boundary conditions that found are easy to solve  by PIA. Finally, the numerical values 

for skin friction  for varying Reynolds number, Casson fluid parameter, and open angle  are 

discussed.  
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في القناة المتقاربة    لمائع كاسون  دراسة تحليلية جديدة لتدفق جيفري هامل لا نيوتوني

 بواسطة خوارزمية الاضطراب التكراري   والمتباعدة
 

 عبير مجيد جاسم ، علي جويعد المالكي

                                                           المستخلص 

تدفق جيفري هامل للسائل غير النيوتوني وهو سائل    سا ئلة  خوارزمية تكرار الاضطراب لحل مفي هذه المقالة ، يتم استخدام   

العادية. يتم حل المعادلة    الغير خطية    دلة التفاضليةعلى معا   لحصولكاسون  للتبسيط ، يتم تطبيق تحويل مناسب لأوجه التشابه ل

الدرجة الرابعة  تتم مقارنة كلا الحلين مع تباين     رنجا كتامن  وعدديًا باستخدام   خوارزمية تكرار الاظطراب  الناتجة عن طريق

من   المعلمات   بشرتقنية  النهج  فعالية  من  التحقق  المعلمات    طأجل  تأثيرات  توضيح  يتم   ، والمتقاربة  المتباعدة  القنوات  من  لكل 

                                                                                                             باستخدام المحاكاة الرسومية


