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1. Introduction
Recently, researchers and scientists have been interested in studying the theory of heat transfer

by natural convection because of its wide applications in various fields of science and technology.
These applications include aircraft cabin insulation, nuclear reactors, solar collector sensors, heat
storage systems, power transmission cables, cooling of electronic components, etc. [1, 8, 11, 17,
19]. One of the most famous problems of natural convection that has attracted the attention of quite
a few researchers is the problem of two-dimensional transient natural convection between two
concentric circular horizontal cylinders. Among the first researchers who contributed to providing
experimental solutions to the problem of natural convection between two horizontal concentric
cylinders are Crawford and Limlich [3], who carried out a numerical study in order to find
solutions to this problem, during this study they succeeded in approximating the steady-state
differential equations with appropriate difference equations, moreover, the effect of diameter ratios
at 2, 8 and 57 is discussed in the case of Prandtl number 0.7. This study paved the way for many
authors and researchers who succeeded in finding numerical and analytical solutions to the
mentioned problem, for example, Lawrence et al. [9] presented an analytical study in which they
used the Rayleigh number power series to solve the problem of natural convection between two
concentric horizontal cylinders with slight temperature difference. During their study, the effect of
Prandtl number, Rayleigh number and radius ratio on streamline formation, local heat transfer
rates, velocity and temperature distributions were discussed. Experimental and theoretical-
numerical studies were introduced by Kuehn and Goldstein [8]. Mach-Zehnder interferometer uas
used in experimentally study to locate temperature distributions and coefficients of local heat-
transfer. On the other hand, the governing invariant property equations have been solved
numerically relying on the finite difference method. Their comparisons between experimental and
numerical results under similar conditions illustrated good agreement. Tsui and Tremblay [17]
contributed to a theoretical-numerical study in which they discussed the effect of Grashof number
from 7 x 102 to 9 x 10* as well as the effect of Variation in diameter ratio between 1.2, 1.5 and
2 when Prandtl number is fixed at 0.7. Pop et. al. [12] obtained an approximate analytical solutions
to the presented problem, they used the method of matched asymptotic expansions, through which
they were able to obtain the solutions for three regions (inner boundary layer, core and outer
boundary layer) to short times, and they found that the solution is clearly distinct from the solution
of the steady state. Hassan and Al-Lateef [7] conducted a numerical study in which the energy and

vorticity equation was solved using the alternating direction implicit (ADI) method, while the
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stream function equation was solved using the successive over relaxation (SOR) method. The
results of the numerical solutions were discussed based on the difference in diameter ratio between
1.2, 1.5 and 2 as well as the effect of difference in the Grashof number from 102 to 10> with a
difference in the Prandtl number values. A numerical study of natural convection in a horizontal
annulus with two heating blocks has been presented by Touzani et. al. [18], they found that heat
transfer increases significantly at the upper region of the annulus, in addition, they note that the
presence of block helps to improve the heat transfer in general. A new procedure based on
combining the homotopy perturbation method and Yang transform was proposed by Al-Saif and
Al-Griffi [2], who succeeded in finding analytical approximate solutions to the problem of two-
dimensional transient natural convection in a concentric cylindrical horizontal annulus bounded
by two isothermal surfaces. During their work the effect of different values of each of the Grashof

number and the radius ratio on heat transfer and fluid flow (air) at Prandtl number 0.7 was studied.

Despite the capabilities of many iterative methods and the possibility of their application in
order to find analytical solutions to non-linear flow problems, especially the problems of natural
convection, most of these methods are almost not without some difficulties resulting from high
computational operations that require great time and effort in order to obtain the desired solution
to the studied problem, such as HPM [10], HAM [13] and DQ method [14,16]. As well as, it is
possible to rely on various integral transformations (Yang transform, Laplace transform, Fourier
transform, ...) in finding analytical solutions to linear problems, but it is often difficult to apply
these transformations to obtain analytical solutions to some non-linear problems. What was
mentioned prompts us to create a new procedure by which we can avoid the mentioned difficulties.
In recent years, researchers have noted that a combining of integrative transform methods and
iterative methods may help address the difficulties that arise when applying each method
individually. Moreover, we proposed to combine the Fourier transform with the homotopy
perturbation method (HPM) to get a new algorithm that we refer to as (FT-HPM). In addition to
what we have mentioned, and as a result of our modest review of the previous literatures, we did
not find anyone who has used this technique (FT-HPM) to solve the problems of natural
convection, and in particular the current problem. In this work, a new developed algorithm (FT-
HPM) is presented in order to find approximate analytical solutions to the two-dimensional
transient natural convection problems in a concentric horizontal cylindrical annulus. Moreover,
the problem was divided into three regions, the inner boundary layer (located near the inner
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cylinder), the outer boundary layer (located near the outer cylinder), and core region located
between the two layers, and depending on the proposed method, the analytical solutions were
found for the mentioned regions. Besides what has been mentioned, we have studied the
convergence analysis of the new method analytically and experimentally by formulating and
proving some theorems. In addition, we have applied these theorems to the results of the obtained
analytical solutions. The tables and graphs of the new analytical solutions show the necessity,
importance and benefit of using the current method. In addition, the results showed the accuracy
and efficiency of the new technique, and they are in agreement with the results of previously
published studies [1, 7, 17].

2. Basic Idea of Homotopy Perturbation Method

In 1998, the homotopy perturbation method (HPM) was introduced by researcher He J. Huan
[5, 6]. This method was characterized by its ability to solve many linear and non-linear differential
and integral equations. This method is considered highly accurate and efficient and has proven
effective in solving many non-linear problems that have wide applications in various fields of life.
When using this method, the solution is assumed as the sum of an infinite convergent series [4].
To display the basic idea of this method, we must consider the general form of the following non-

linear differential equation:
A(u)—g(r)=0,r €, 1)
associated with the following boundary conditions:
ou,
B(u5)=0,7€T, )

Where u denotes to the unknown function, g(r) is a known analytic function, A, B and I represent
the general differential operator, boundary operator and the boundary of the domain £,
respectively. The operator A can be divided into linear operator L and non-linear operator N.

Moreover, Eq. (1) can be rewritten as:
L(w)+ N(u) —q(r) =0. 3)

Through the basic idea of the homotopy perturbation method, the homotopy U(r,p): 2 X [0,1] —
R is defined by the following formula

H(U,p) = (1 —p)IL(U) — L(up)] + p[A(U) — g(r)] = 0, 4)
Or
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H(U,p) = L(U) — L(up) + pL(u,) + p[N(U) — g(r)] =0, )

where p € [0,1] refers to the impeding parameter and w, is an initial solution of Eq. (1), which
satisfies the boundary conditions of Eq. (2). It is clear that Eq. (4) or (5) satisfies the conditions of

homotopy as follows

H(U,0) = L(U) — L(uy) =0,

H(U,1) = A(U) — g(r) = o) ©)
Now, the solution of Eq. (4 or 5) can be assumed as a power series for p as follows:
U=3%i,p'Y; (7)
by setting p = 1, the approximate solution of Eq. (1) can be given as follows

u= Li_r;r} U=2X5%U. (8)

3. Basic Algorithm of FT-HPM

The fundamental idea of this section is to develop the homotopy perturbation method by using
the Fourier transform in order to obtain a more advanced hybrid procedure. To give a full
explanation of the new algorithm, we have to write the non-linear differential equation in the

following form:

am™ (o™
_n(@U)+R(U)+N(U)=g(T1,r2),T1,T2E.Q, ©)

ary

where R and N represents the linear and non-linear differential operator, respectively, and
g(ry, 1) refers to the source term. Accordingly, we can view the basic steps of this algorithm as

follows:

Taking the Fourier transform with respect to r; for both sides of Equation (9), we have

F, [ﬁ (ﬁ V)| + FARW) + NU) = g(r,m)] =0, 1,15 € 0. (10)

n m
or{" \ory

Using the differentiation property of the Fourier transform, we obtain
(i0)"F, [ U] + Fo[RQW) + N(U) = g(ry,)] = 0. (11)
The rearrangement of Eq. (11) leads to

Py [ U] + o B RW) + N W) = gra,m)] = (12)

Taking the inverse FT for both sides of Eq. (12), we get:
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L l( )™ Tl [R(U) + N(U) g(rl»rz)]] (13)

By using the HPM, we have

(=) [57U = geto| + 2[5 U + FT [ RO + N ) = gGrm)]f| = 0. (19)

Rearrangement Eq. (14), we deduce

om am am

U = otte — P ytio — P |Fi [ R + N(U) — g ()]} (15)

by applying the Fourier transform with respect to r, on both sides of Eq. (15), we have

m

Fo |5 U] = F2 [5eo] = p%2 [Fto + FIH{Zm P RO + N W) — g Gumlf]. - (26)
where, Fi [g(r)] = Fr(w) = ffooog(rk)e‘i“”k dr, k = 1,2.

by the differentiation property of the Fourier transform, we get

Fy[U] = — T[amu] d T[a o+ Fi

(i)™ 2 [gym 0 (iw)m 2 [grm

= F[RW) + NU) - g, m)1}]. 17)

Taking the inverse FT for both sides of Eq. (17), we have

s om om 1 RU)+N) —}m
U=7% [(iw)mTZ [arzm uo]l (lw)m {a il + Fi! (iw)™ Tl{ g(r,m) -(18)

From the assumption of the HPM, we have

U=3Y2,0'U;, (19)
and the nonlinear terms can be decomposed as

N(U) = X0’ H;. (20)
Where Hj(U ) represent the He’s polynomials [15] that are given by:

HJ‘(U0: Uy, Uy,..., UJ) = %% [N(Zfozo piUi)]pzo,j =0123,.. (21)

Putting Eq,. (19) and (20) in to Eq. (18), we obtain

1 om
(lw)m P2 [6rm uo] (lw)m F2 [arzm 0] -

(icf)mTZ [Tl {( )nTl[R(ZJ OpJU)-I_Z] OP]H 9(7”1:7”2)]}] |
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By comparing the coefficients of the same powers of p, we get

pOI UO = :FZ_l _(i(j)m ,7:2 [%uo]l, (23)
— [ 1 am 1 _ 1

pt: Uy = F;t __ (iw)mTZ [@uo] - (iw)mTZ [Tl ! {WTI[R(UO) + Hy — 9(7”1’7”2)]}]1, (24)

p%U2=T51—UQmTA?T%;gﬁﬂUKMJ+HJHL (25)

pl:U; = F; l_ﬁﬂ [Tl—l {ﬁ:ﬂ[R(Uj_l) + H,-_l]}]l, (26)

Taking p = 1, then the analytical approximate solution u can be given by

u= Li_r;r} U=2X5U. 27)

4. Mathematical formulation of governing equation

We consider the Newtonian fluid in two concentric horizontal circular cylinders enclosed by
two isothermal surfaces. The problem is formulated in Fig. (1) as follows: (a) both fluid motion
and temperature distribution are chosen as two-dimensional (2-D), (b) fluid is incompressible in
addition to being viscous, (c) the friction heating is almost too slight, and (c) the properties of fluid
are constant except that density changes with temperature. Therefore, the governing mathematical

equations can be presented by the Boussinesq approximation by the following formulas [17]:

+3=0 @8)
U1 = ()5 +0(5E+57). (29)
U+ 05= ()50 (Ga+55) + 9a(T - T,). (30)
Z—?+ﬁg—§+?g—§=k(g%+g%), (31)

where; U, V7 refer to the components of velocity in £, ¥ directions; T, §, ?, p, @ and k indicate to
temperature, gravity acceleration, kinematic viscosity, density, thermal expansion coefficient, and

thermal diffusivity, respectively.
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In order to facilitate the solution of the problem, we can reduce Egs. (29) and (30) to the
vorticity-stream form by differentiating Eq. (29) with respect to ¥ and Eq. (30) with respect to x,

then one of the two equations is subtracted from the other and using the definition of the vorticity
function (§ = % + 2—;’), the pressure is omitted. In addition, the Cartesian coordinate system is

converted to the polar coordinate system. Then the problem is converted from the dimensional

form to the non-dimensional form using the dimensionless set as the following:

_OL 7 B _F B 6 o T o ;o
U—ﬁav_ﬁalp_ﬁar_zat_zz’g_ﬁ’T_fh_fC’V_LV' (32)

Figure 1: Physical flow geometry and coordinate system.

Now, the non-dimensional governing equations can be given in the stream- vorticity formula as

follows:

U2 i o (s 0) - 208 g )
Z U4V =2prT, (34)
G = -7y, (35)
v=-2L =22 (36)

where the above system is subject to the following initial and boundary conditions:

G=9y=T=0 everywhereatt = 0. (37)
oy 19y

Yp=-=---=0, atr=R;,r =R,

T=1 at r =R;, (38)
T=0 atr=R,.
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Where, L represents to the gap of annulus, R; and R, denotes to the ratio of inner and outer radius
to the gap, respectively, Pr Prandtl number, Gr Grashof number, U, V, T, 1y and G refer to the
radial velocity, tangent velocity, temperature, stream function and vorticity function, respectively,

as well the subscripts i, o, ¢, h indicate to inner, outer, cold and hot, respectively.
5. Application of FT-HPM

Now, to apply the procedure of FT-HPM, first, we substituting Eg. (35) and (36) in to Eq. (33) and
Eq. (34) to get the following system:

sin(6) aT oy 8 Y 8

2. (729) + Gr (cos(@) Z — DT _ gy - (2L gy -2 ryy) =0, (39)

T 1 1 (09 adT dPaT _

or ;VT—;(EQ—EE)—O- (40)
. 2 _ 9% 10 102

Substituting V= = P, +r6r+ 2692 |nto Eqg. (39), we obtain

0 (3% 19y | 109% T sin(0) AT\ g4, 139 a(Viy) a8y a(viy)
6t(6r2+r6r+r2 692)+GT(COS(9) r ) v l/) r(ar a6 06 or )

(41)

Rewriting Eq. (41) to get
% | 2 (% 107y L T\ _ 4
orot o at (6r2 T 662> +Gr (TCOS(H) ar Sln(e) 69) rv l/)
_ (% p2y O 2
(araeV ¥ aearV lp)

Then, the basic steps of the new algorithm can be applied as follows:

= 0. (42)

Taking the Fourier transform with respect to r for both sides of Eg. (42), we have

- [62¢ %(E;Tfr+:ng)+Gr(rcos(9)——51 €)) )
g fa

+ =0. 43
T e (R ) - 2 7)) *

Using the differentiation property of the Fourier transform, we obtain

oy o[BS Z- 2]
T1[g —F oY a LK =0 (44
- (LL o) - L)

Taking the inverse FT for both sides of Eq. (44), we get:
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a (9% 10%y
| E(ﬁr+raez)+6r (rcos(@)——sn(e) ) — o
—t¥5 w1 oy 9 B

= (L2 o) - 22 7))

Now, we using the HPM idea on Eqg. (40) and (45), we have

ap
3 +
o0 ) 9 (0% 107y rcos(@) — ~
(1_p) [E_lpojl +p Tl_l (iTl 6t(61‘2r+‘r692)+6r —Sln(e)— = 0.
Lw |
\" e @aow -2z ow)| )

T s OT 1 o 1(0YAT 9yYaT
a-nl5-T]+o[G-5vT -1 G- Sa)] =0
The rearrangement of the above system leads to

2 2

a(%r+1af)+6r(rcos(0)——s n(0) )

gk % T_ —T at \or r o6

l/JO-I_pIIJO-I_p 1 iw 1 4 awa 2 awa 2
—(V*y)r — 6_r£(|7 lP)—%;(V Y)

aT . . 1 5 1 /09 aT P aT\] _

TP —p [T+ (55— 5050 | =

=0. (48)

by applying the Fourier transform with respect to t on both sides of Eq. (48) and (49), we have

9. (2% 0%y 4
at(arz)r-l-rat (692) (7 y)r
1 N 1 . 111
Fal9) = = Folg) = 2, { s + pFH | L7y | +6r (reos(8) 5 — sin(6) 35)
(22 (p2y) — 23 (p2
<6r 26 VW) — 555, (V 1!’))
= o _p{Llpep  L(20OT _dvor
FolT] = TZ[TO] 7—"2 [pTO p{PrV T+r(ar 26 96 ar)}]'

Taking the inverse FT for both sides of Eq. (50) and (51), we deduce
2 (3% ) _ (pe
at(arz)r+r6t (692) (V l/))T'
— 1 * 1 % - 1
Y =7F;"! ZTZ[IPO] ——F2{p¥o + pF1 ! —F1 +Gr (TCOS(H)G—T — sin() 5)
oY d oY @
- (22 wroy) - 22 2y

=l e L o _p|Lpzr 4 L(ROT _0%oT
T=% [iw FalTo] w2 {pTO p [Pr VT + r (ar 0 a6 ar)]}]'
From the assumption of the HPM, we have
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Y =20 pjl/Jj and T = X2, pjTj-

and the nonlinear terms can be represented as:

ay vy _3 ; oy AV _3 -*awar _3 GandawaT

20 or J’E 20 Hy, a6 ar ar 20

Substituting E g,. (54) and (55) in to Eqs. (52) and (53), we get

=F, 5] — ZFal5] -

Lop W =F5?
e T
lw |l(/)

Gr (rcos(@)M sin (9)32] ob T’)
l (V4 j= Opjl/}])r_(Z] oP H Z] Op H)J J

Jat (6r22] oP 1/11) ra(OHZZ] P l/)] +l—!l (56)
|
|

(54)

YiLop’Gl (55)

—|72 Yo' Ti +
. _ j=0
T20p'Ty = Fit | = FolTg] = Z RT3 + 2 F, (57)
J iw iw lw ;(2j=0 pJG] — 2j=0 p]G])
Comparing the coefficients of the same powers of p, we obtain
( -1 [ 1 .
Yo =%, ZTz[lpo]
pP:< 3 , (58)
—_-1|1 *
|70 = 75 [Su005)]
( [ -1 ] —
L F, [5)]
_ a (92 10 (02 .
N At PN A a(ai’i")r+;a(a;’i°)—<Ho—Ho>—
P < z“FZ :Fl ;Tl aT, aT, y (59)
i (V*po)r + Gr (rcos(9) - — sin(6) )
P | . 1 1 5 1, s
gT1 = Tz _gjjz[To] +ZT2 {;V To +;(Go - Go)}]
( 9 (0%, 19 (9%, *
I —1|1 E(arZ)r+?§(aez)_(H1_Hl)_
P l)bz - TZ ;TZ Tl le 4 0Ty 0Ty
p?: < (V*y)r + Gr (rcos(H)W — sin(0) ) : (60)
11 1 1,
(T, =F; ! [ZTZ {;VZTl +;(G1 - G1)}]

azlll azw
V=Tt |G R P () + o (5e) — (i -
(\741/)] 1)T‘+GT‘ (rcos(@) 9Tj-1

—g-1|Llg (1 p2r 1 — G
T] =% [inZ {PrV J-1 r( J—1 ]_1)}]
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Where,
_ 0 a3y « _ 0o dV%Yq 9o vy, | 9P, aV? 1!’0 61/10 VAP, | 9Py AV
Ho_ae ar ' 0T or ae’Hl 26 or o0 and Hy = 7= 6 T or o8
9o 0Ty « _ 0P 9Ty _ 0y 0Ty | 0y, 0Tp « _ 0Yo 0Ty | 0941 0T
Go = a0 or' 07 ar a9’ 17 @86 or @ 40 or and Gy = (62)

dr 00 or 96’

In the porous annulus, the field of flow can be segmented into three regions: an inner boundary
layer located near the inner cylinder, an outer boundary layer located near the outer cylinder, and
a core region located between the two layers. Using the initial solutions which found by Pop et al.
[12] in addition to the initial and boundary conditions in equations (37) and (38), the solution of

equation (58) in the three regions can be given as follows:

Ph =24t T; ( nerfc(n) + = (e n* 1)) sin(8) = Tierfc(n), (63)
YE = 2VET, (§ erfe(©) — = (e = 1)) sin(®) , T¢ = Toerfc(®), (64)
PYs§ = \/—(RZ 5 ((T; +RT,)r — (T, + RTHr 1) sin() , T§ = 0. (65)

And then, the solutions of Eq. (59) are given in the following forms:

_ 3 3
T, <7‘[Ti {(ln(r) r? + 6rt — 4t) erfc(n) — 8Titz/mr + ZTL-tE\/E} sin(H)) s
+ -+ Grrit cos(0)

i cos(0)

V1= G {\/ETi (\/frzl n(r) — ZtS) e 4 % (r — %) \/fngerfcz(n)} T; +

-2 sin(0)
m3/? ( tz + T/t (1 — 3r)> + 3T7r(r ——) erfc(n) +-
(66)
3
2 —4TPrT;tze™ " cos(0) — 4nPrT;t(r — Verfc(n) cos()
i . ~Tie” 3
i = Vtn3/2rpr + 4 \PrT; t2 cos() + 4wt PrT;(r — 1) cos(6) + : (67)

n(Pr(r? —r) —r? + 1 + 4t)

This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution- 55
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).



http://creativecommons.org/licenses/by-nc/4.0/

Y. A Abdulameer and A.S.] Al-saif Bas ] Sci 40(1) (2023)44-69

s 2.3 _p4 o 8p.2
(<3+Rr Rr +3Rr )erfc(f)—]
5 4Rt? — 2R In(r) tr?

Ty s cos(0) e¢
= T
4T, In(r) t2 + 2VAT,r3VE (-2 + R)
; 4
l/)i) — \/21;13(/9212 + e+ To Grr*t ’ (68)
3 5 4
n —\/rT, (2 In(r) tzr? — 2tz + In(t) \/E(Rr3 - %)) e¢’ cos ()

_.|_ oo
8 3 3 3 3
oot otn ((R - Er) cos(0) +Zln(r) r? —Zrz + Zt>

3
e [ VZPrT, tze=¢* cos(8) + nPrT,t(R — r)erfc(€) cos(8) —]I
T? = \/%In (tPrTO(R —1)cos(0) + %Pr(R —7r)r— %Rr + %rz — t) E (69)
3
| —\/mPrT,tz cos(0) |
Yi=0,T =0 (70)
Where, n = % &= I:/; T; and T, refer to the inner and outer cylinder temperatures,

respectively, R denotes to the radius ratio.

Then the analytical approximate solutions ¥ and T can be given by setting p = 1 as:

Y= p}il“w(zﬁlo ¥+ Zho¥) + Zio ¥f)- (71)
— N i yN N
T= A}gnm(Z,-:o T + X0 TP + 200 TF). (72)

6. Results and Discussion

This discusses the effect of Grashof number and the diameter ratio on the analytical results
of the problem two-dimensional transient natural convection in a horizontal cylindrical concentric
annulus bounded by two isothermal surfaces which obtained by applying the new technique (FT-
HPM).

6.1. Streamline and Isotherm patterns

To illustrate the heat transfer within the cylinders, the streamlines and isotherm contours are
used. Figs. (2) and (3) compare the results of the current work with those of previous works [2, 7,
17]atR = 2, Pr = 0.71 and for Grashof number values of 10000 and 38800, respectively. In these

figures, we notice a good agreement of the analytical results of the current method with the results
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of the mentioned studies and at the same values of the Grashof and Prandtl numbers and the ratio

of the radius.

(©
Figure 2: Comparison of results between (a) [17], (b) [7], (c) [2] and (d) FLT-HPM for stream (left)
and isotherm (right) for Gr = 10000, Pr = 0.71 and R = 2.

(d)
Figure 3: Comparison of results between (a) [17], (b) [7], (c) [2] and (d) FLT-HPM for stream
(left) and isotherm (riaht) for Gr = 38800, Pr = 0.71 and R = 2.

In Fig. (4-a, b, c), the Grashof number of the range (103 < Gr < 4 x 10*) as well as different

radius ratios (R = 1.2, 1.5 and 2.0) at Prandtl number of 0.7 are considered.
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Gr=1x103

Gr=1x10*

Gr =2 x 10*

-1 -0.5 0 0.5 1 -1.5 -1 -0.5

-1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1 1.5 -2 -1 0 1 2

(A)R=1.2 (hR=15 (c)R=2

Figure 4: Streamline (left) and Isotherms (right) at Different Grashof number, Pr =
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Figure 4a shows that there is no obvious change in the flow pattern and temperature fields at R =
1.2 with different values of Grashof number. In this case, the temperature pattern is similar to
circles when the radius ratio is small, and this indicates the weak effect of thermal currents. With
the increase of the radius ratio to 1.5, Fig. (4-b) shows that the flow pattern starts with an upward
displacement, in addition, the temperature pattern remains similar to circles when Grashof number
lies between 102 and 10%, and begins to deform slightly when the Grashof number increases to
4 x 10* and this indicates an effect of convective currents. Figure (4-c) illustrates that there is an
obvious change in the flow pattern and temperature domains at R = 2 with different values of the
Grashof number. In this case, the flux gap moves upwards significantly, in addition, the distortion
of the temperature pattern increases with increasing Grashof number up to 4 x 10* and this
indicates an increase in the heat convection. In order to show the efficiency and accuracy of the
suggested method (FT-HPM) in finding approximate analytical solutions to the current problem,
we have to present the following two Tables:

Table 1: Comparison the absolute error of FT-HPM with YT-HPM [2] and HPM [2] of Y (r, )

at Gr = 1000, Pr = 0.7and R = 2.

6 | r t =0.01 t=0.1
FT-HPM | YT-HPM [2] HPM [2] FT-HPM | YT-HPM [2] | HPM [2]
1 |1.88x1077 | 282x 107! 56.983 0.16 x 1073 8.921 196.254
0 | 15| 299%x107% | 544x107* | 1.10 x 10~! | 0.22x 1073 4.775 105.047
2 [1.11x107%2 | 391%x10712| 791%x1071° | 0.13x 1073 | 7.32%x 1071 | 16.109
1 | 283%x107° | 585x 1072 11.811 0.24 x 10~* 1.463 32.164
30 [ 15| 466x107° | 209 x107* | 423x1072 | 0.34x107% | 7.54x 107 | 16.574
2 | 1.38x107° | 1.02x107% | 208 x107* | 0.20x107* | 1.03x 10~ | 2.254
1 | 1.79%x1078 | 2.64 x 107! 53.355 0.15 x 1073 8.472 186.363
60 [ 15| 285x1078 | 6.10x107* | 1.23x 107! | 0.21 x 1073 4.544 99.954
2 | 1.05%x1078 | 3.69x 1077 | 6.98%x 107> | 0.12%x 1073 | 7.01 x 1071 | 15.419
1 |838x107° | 1.39x 107! 28.240 0.72 x 10~* 4.071 89.597
90 | 15| 1.34x1078 | 230%x 1075 | 455x 1073 | 0.99 x 10™* 2.152 47.371
2 | 509%x107° | 1.01x107° | 1.97 x10™* | 0.58x107* | 1.18 x 10~ | 7.001
1| 113%x107® | 1.65%x 107! 31.681 0.97 x 107* 5.274 115.973
180 | 15| 1.79%x107® | 6.65x10™* | 1.14x 107! | 0.13x 1073 2.847 62.603
2 | 656x107° | 9.24x 1077 | 1.79x107* | 0.77 x 107* | 448 x 10" | 9.837
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Table 2: Comparison the absolute error of FT-HPM with YT-HPM [2] and HPM [2] of T (7, 0) at
Gr = 1000, Pr =0.7and R = 2.

0 | r t =0.01 t=0.1
FT-HPM | YT-HPM [2] HPM [2] FT-HPM YT-HPM [2] | HPM [2]

1 [208x1077 | 3.25%x 1073 17.571 0.23x107° | 3.23 x 1072 3.635
0 |15]61x10719 | 259x 1075 | 3.38x 1073 | 0.24%x1075 | 276 x1072 | 5x 1071
2 | 59%x107 | 3.7%x10713 | 559x 10711 | 0.25x 107> | 7.01x 1073 | 8 x 1072

1 ]92x10715 | 1.81 x 1072 318.479 0.12 x 107* 1.586 380.42

30 | 15| 22%x1078 | 258x107° | 295%x 1073 | 0.34x 1075 | 281 x 107t | 72411

2 | 29%x10713 | 3.7x10713 | 559 x 107 | 0.73x107° | 1.55x 1073 1.183

1 | 20x10°8 | 3.48x 1073 115.391 0.46 x 107> | 485x 10" | 121.08

60 | 15| 75x107° | 259%x 107> | 3.99x 1073 | 048 x 107> | 6.78 x 1072 22.35
2 | 1.7x10713 | 3.7x 10713 | 559 x 107! | 0.50%x 107> | 551 x 1073 | 2x 107!

1 | 20x1077 | 1.22x 1072 282.258 0.10 x 107* 1.405 342.26

90 | 15| 3.0x107% | 559x107° | 4.74x1073 | 0.27x 1075 | 291x10"* | 65.903

2 | 1.1x1071 | 3.7%x10713 | 595x 10711 | 0.58x 107> | 1.17 x 1072 1.271

1 | 46x10712 | 1.40 x 1072 270.701 0.25 x 1074 1.289 311.13

180 | 15| 3.7x1078 | 259x 1075 | 3.44x1073 | 0.69x 107> | 2.22x 107! 58.82
2 | 23%x10713 | 3.7%x10713 | 559x 10711 | 0.14x107* | 2.69x 1073 | 9x 107!

From the comparison of the absolute errors of the approximate solutions of the studied problem
and as shown in Tables (1) and (2) the absolute errors in the results of the proposed method (FT-
HPM) are less than the absolute errors of the results previously calculated using YT-HPM and
HPM at Gr = 1000 and Pr = 0.7, so we can say that the new method has higher accuracy and

efficiency than the mentioned methods [2].

6.2. Velocity distribution

To study the velocity distribution, we use the velocity component in the 6-direction (The
tangent velocity), which can be calculated by differentiating Eq. (71) with respect to r. Fig. (5-a,
b, c) shows the velocity diagram for Gr = 1000, Pr = 0.71, t = 0.01 with different values of
radius ratios (R = 1.2,1.5,2)and 6 =n(30°),1 <n < 5.
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(a) (b) (©)
Figure 5: 6-component of velocity versus radial position at 6 = n(30°),1 <n < 5,
for Gr = 1000, Pr=0.71,t=0.0land (@ R=1.2, (b)) R=15,(c)R=
It is clear from Fig. 5 and for all cases (a, b, ¢) the effect of the radius ratio on the velocity level.
It was noted that the absolute maximum values of velocity are in the following order, largest for
6 = 60°, next largest for 120°, followed by 150°, 90°, and the minimum value of the velocity is
at 6 = 30°.

6.3 Heat transfer rates

The local Nusselt numbers Nu;(6) and Nu,(8) are used to express the local heat flow rates
per unit area in the inner and outer cylinders, respectively. In the same way, the means of the
overall Nusselt number Nu is used to express the total heat flow rate from the inner cylinder to the
outer cylinder. Moreover, the local Nusselt numbers Nu;(6) and Nu,(8), and the mean Nusselt

number Nu are defined respectively as follows:

Nu; = —In(R) [r ‘;—f]r:R_ , (73-a)
Nu, = —In(R) [r g—f] . (73-b)
m@ (T[ ar
Nu'l = —TJO [T 6_r]r=Ri d9 y (73'C)
__m® (Mo _
Nu, = — = fo [r ar]meo de. (73-d)
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Both mean Nusselt numbers (Nu,, Nu,) vs. the non-dimensional time ¢ are plotted in Figs.
(6-12) at Pr = 0.7 with different values for both Grashof number and radius ratios. Figs. (6), (7)
and (8) show the mean Nusselt numbers (Nu,, Nu,) at R = 1.5 with Gr = 4850, Gr = 11500
and Gr = 26200, respectively. It is clear from this figures that when the Grashof number
increases, the mean of the Nusselt numbers (Nu,, Nu,) increases at the radius ratio of 1.5. In
addition, Figs. (9), (10) and (11) illustrate the mean Nusselt numbers (Nu,, Nu,) at R = 2 with
Gr = 1000, Gr = 38800 and Gr = 88000, respectively. It is seen from these figures that the
mean Nusselt number increases when the Grashof number increases at a radius ratio of 2. In the
above cases and for all Figs. (6-11) we note that when t increases, the mean of Nusselt numbers
(Nu,, Nu,) comes close to their steady-state values. Furthermore, Fig. 12 exhibits the mean
Nusselt numbers (Nu,, Nu,) at Gr = 732 and R = 1.2. this figure show that the mean Nusselt

numbers (Nu,, Nu,) approach unity at t increases. This indicates that convection is almost non-

existent at the stated values.

Z
c

Z
<

0.5 0.5
00 Oj‘l 012 013 O.I4 0.l5 0.l6 0.7 0O O.l1 012 O.‘3 0.‘4 O.I5 016 0.7
t t
Figure 6: Mean Nusselt number for Gr = Figure 7: Mean Nusselt number for Gr =
4850, Pr = 0.7,and R = 1.5. 11500, Pr = 0.7, and R = 1.5.
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0 0.1 0.2 0.3 0.4 0.5 0.6
t

Figure 8: Mean Nusselt number for Gr =
26200, Pr = 0.7,and R = 1.5.

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6
t

Figure 10: Mean Nusselt number for Gr =
38800, Pr = 0.7,and R = 2.

5

0.7

L . L . L .
0 0.1 0.2 0.3 0.4 0.5 0.6
t

Figure 9: Mean Nusselt number for Gr =
10000, Pr = 0.7,and R = 2.

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6
t

Figure 11: Mean Nusselt number for Gr =
88000, Pr = 0.7,and R = 2.

.
0 0.1 0.2

L
0.3

t

. . L
0.4 0.5 0.6 0.7

Figure 12: Mean Nusselt number for Gr = 732, Pr = 0.7,and R = 1.2.
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Table 3: Comparison of the mean Nusselt number with [17] and [7] at Pr = 0.7 with various

values of Gr
R Gr Mean Nusselt Number (Nu)
FT-HPM [18] [7]
10000 1.69 1.64 1.658
2 38800 2.20 2.4 2.42
88000 3.05 3.08 2.99

It is clear from the above table (3) that the results of the current method (FT-HPM) are in good
agreement with the results of previous works.
7. Convergence Analysis of FT-HPM

This section presents some basic definitions and theorems that help in the study of
convergence analysis. Moreover, the objective of this section is to find the necessary condition for
convergence of approximate analytic solutions resulting from the application of the new algorithm
(FT-HPM).

Definition 7.1 Let 7: H — R be a non-linear mapping, where H, R refers to the Banach space,
the set of real numbers, respectively. Then, the sequence of the solutions can be written as

Eni1 =T(E), E, = ;-lzo h;, j =0,1,2,3, ... (74)
where, T satisfies the Lipschitz condition, such that for y € R, we have

T (En) = N (En-DIl S VIIEp — En—qll, 0 <y < 1. (75)
Theorem 7.1 The analytical-approximate solution series ¥ (r,8) = Y72, ¥;(r, 0) that resulted

from the application of the new algorithm (FT-HPM) converges if the following condition is

proven:
|Eps1 —Epll # 0asn - oofor0 <y < 1. (76)

Proof:

Ensr = Enll = 12725 95 = Zico¥sll = |90 + 2725 = [ + Zi-a ] |
= [ %o + 235 L3t [H-] = {vo + Zjea L35} |
= [l o + L XJ21[3G-1] = {tho + L1 Eja[H4 ]} |

Since, E, .1 = T(E,), then
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Ens1 — Enll = ||LT*T Ehcol Mo — LT 2750 [H-a] || = || LT[0 ] —
LPT[Ei S wil |l
< 1L T[Eow;] = TIEg wi] || < vl Zeo Lt [H-1] — X720 L[4 ] ||

< V2|50 Lt [H-a] = 2528 Lt [

<y Zjco Lt [Hoa] = =0 LT [H;_a]|| = y™IIE1 — Eoll = 0asn — oo for 0 <
y <1
Where,

110 = Ft SR ([ R0))]
2 () 2 () - (41 )

:]‘[- 1 = ot or? r ot
" T . aT;i_\ |’
(V*;_1)r + Gr (rcos(@) ajr - — sin(6) _aje 1)

Theorem 7.2 The necessary condition for the convergence of the solutions series T(r,0) =
Y=o Tj(r,0) that is generated by the current algorithm (FT-HPM), is to fulfill the following

property:
|E,i1 —Enll > 0asn - oofor0 <y < 1. (77)
Proof:
[Enss = Enll = |Z720 T = Zioo Tl = [|To + X721 T — [To + X1 Tl
7+ Z ]~ (T + S 1375 |
= || o + 12" Ej5 (3] = {To + 12" X[ H-a]} ]
Since, E, 11 = T (E,), then
IEns1 = Enll = || L2'T Ejo|Hjoa] = L2'T )25 [HjA] |
IS ) - TR T < U (e ) - (s ]
<yl Zico L2 [Hjoa] = Ejo L2 [Hj-a] || < v2[ 20 L2 [#-1] -
2128 12 [y ] |l
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<y Xco L [Hjoa] = X9=0 L2 [Hj—a]|| = y™IIE1 — Eoll = 0asn — oo for 0 <
y <1
Where,

_ 11 . 1 1/ 4
L'()=%7" [57:2(')] y Hj1 = EVZTJ'—l + ;(Gj—l - Gj—l)' u
The results of theorems (7.1) and (7.2), can be used to calculate the values of the parameter
y™ by constructing the following definition.

Definition 7.2 Form = 1,2,3, ...

“Em+1_En“ ||hm+1||
”E1_E0” = Iyl 4 ”hlll * O;m = 1,2,3,

0 Mhqll =0

ym= (78)

To test the convergence of the analytical solutions to the current problem, we can use Eq. 78.
Moreover, the convergence results of the analytical solutions calculated using two methods, FT-
HPM and YT-HPM [2], were compared, and as listed in the Table 4:

Table 4. Comparison of powers of y between FT-HPM and YT-HPM [2] at Gr = 10, Pr = 0.7,
t=01andR = 1.5.

Y(r,0) T(r,0)
Method % y? Method % y?
FT-HPM | 0.12x 1071 | 0.33 x 107* FT-HPM | 0.30 x 1073 | 0.39 x 107>
YT-HPM | 2.10 x 1071 | 0.60 x 1072 YT-HPM | 0.57 x 1072 | 0.50 x 1073

From Table 4, we notice that y™ - 0 as n —» oo for 0 < y < 1, in addition, the difference in
convergence can be observed between FT-HPM and YT-HPM, which shows that the powers of y
found by applying FLT-HPM approach zero faster than the powers of y that were found based on
YT-HPM. Accordingly, we find that FLT-HPM represents a better convergence than the YT-HPM.

8. Conclusions

In this article, a sophisticated analytical procedure is presented that combines the homotopy
perturbation method with the Fourier transform to provide approximate analytical solutions to the
problem of two-dimensional transient natural convection in a horizontal cylindrical concentric
annulus bounded by two isothermal surfaces. The effect of radius ratio and Grashof number on
heat transfer, fluid flow, velocity distribution, and Nusselt number was investigated. The effect of
Grashof number for the range (103 < Gr < 4 x 10%), at three different radius ratios (1.2, 1.5, 2)

in the case of Pr = 0.7 is discussed. We noticed through this study, the change in the flow pattern
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and the temperature fields is almost very slight at Gr = 103 with different radius ratios, in addition
to that the temperature pattern behaves like circles. When the Grashof number increases, the flow
pattern moves up, while the temperature distribution pattern remains circles when the radius is
small. On the other hand, the temperature distribution pattern is distorted with the increase in the
radius ratio, which is a clear indication of the increase in convection. The results obtained based
on the new algorithm FT-HPM agree with the previously published results. In addition, by
discussing accuracy and efficiency, we concluded that FT-HPM represents a powerful and
effective procedure that can be applied to solve many convection problems that have applications

in various branches of science and engineering.
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