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The objective of this article is to formulate a mathematical model to 

make a vaccination strategy to reduce outbreaks  of influenza A (H1N1) 

via a fractional model, taking into account the time it takes for the 

vaccine to be active. For this purpose, the SIR model is modified by 

using the Caputo fractional derivative, unifying the unit of time on both 

sides of each equation, and adding the control variable with a time 

delay (the vaccine variable). Meanwhile, the theory of optimal control 

is used to construct an algorithm that enables us to determine the 

optimal vaccination strategy. The forward and backward Euler method 

has been used to find the optimal solutions numerically. The numerical 

simulation is based on data from Morocco's experience with influenza 

A (H1N1). 
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1. Introduction  

      In recent years, epidemiology has become an increasingly important part of modern life. In 

fact, the mathematical modeling that provided a connection between mathematics and 

epidemiology has become an active field of study [1-4]. Mathematical models are frequently used 

to investigate the dynamics of infectious disease transmission, spread control, vaccinations 

strategies, and the asymptotic behavior of epidemiological models [5-6].  Control theory plays a 

important role in the development of epidemiology. Indeed, controlling the spread of viruses has 

become a vital subject today [7-9].  More specifically, the applications of optimal control theory 

appear clearly in a variety of fields, such as therapy design, animal disease control, the best 

tuberculosis prevention strategy, and so on. [10-11]. Beside optimal control theory, fractional 

calculus introduces wonderful tools to describe more complete real-life models. This is due to 

three main reasons: The first is that the fractional derivative is nonlocal. The second, the stability 

region of the system described by a fractional differential equation (FDE), is larger than the system 

described by an ordinary differential equation (ODE). Finally, fractional derivatives carry more 

historical information than the classical derivative [12-16]. When a physical system relies on past 

data, a generalization of the ODE known as the delay differential equation (DDE) can be applied 

[17]. The solution of DDEs required not only knowledge of the status at current time but also 

knowledge of the status in previous time.  DDEs have verity of applications in many fields 

including: the mathematical modeling physiological, chemical kinetics, pharmaceutical kinetics, 

ship, spacecraft navigational control, population dynamics, and infectious diseases. Several papers 

have been published in the last decade on the numerical solution of delay differential equations 

[18, 20]. As a result, various numerical methods have been developed and applied to provide 

approximate solutions [21]. The fractional DDE is a non-integer order version of the DDE. Several 

papers have been published in the last decade on the numerical solution of fractional delay 

differential equations. The exact solutions to the majority of fractional DDEs are unknown. As a 

result, various numerical methods [20-23] for providing approximate solutions have been 

developed and applied. Yang and Cao [24] used fixed point theory to investigate the solvability of 

initial value problems for nonlinear fractional DDEs. Wang [25] approximated fractional DDEs 

using a combination of the Adams Bashforth Moulton and linear interpolation methods. The main 

sections of this article are as follows: The second section focuses on developing and designing the 

optimal control strategy for the considered model using the time delay fractional-order SIR 
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epidemic model. While Section 3 focuses on introducing a numerical simulation to clarify our 

main results using a practical case from Morocco's experience with influenza A (H1N1), Section 

4 provides a short summary and conclusions. 

2. The design of an optimal vaccination strategy 

The theory of fractional optimum control is a popular way for obtaining the extreme value of a 

dynamically changeable objective function. This section utilizes fractional optimal control theory 

to determine the optimal pharmacological treatments as a function of time. During an epidemic, 

the aim of government health care is to minimize losses by reducing the number of susceptible S  

, and preventing the infected number of people I   meanwhile increasing the people number of 

recovery R . Mathematically, the problem is to minimize the cost function for a fixed terminal 

time 
ft . There are many interesting definitions of fractional derivatives in fractional calculus [26], 

but for this purpose, we will use the famous Caputo derivatives due to their advantage on initial 

value problems. 

Definition 1 [26] The fractional integral of order 0 1, 0t    is defined by 

            
10

1 ( )
( )

( ) ( )

t f x
J f t dx

t x



 −
=
 −                                                                                            (1)  

Definition 2 [26] Let 1n n−   , the Caputo fractional derivative of order   is given by 

          
10

1 ( )
( )

(n ) ( )

n
t

C

n

f x
D f t dx

t x



 + −
=
 − −                                                                                    (2) 

Consider the cost function as follow 

             
2

0
( ) [ ( ) ( ) ( ) ( )]

2

ft D
u AS t BI t CR t u t dt = + − +                                                                  (3) 

    Where , , , 0A B C D   weights that equalize the scale of the words are indicated. That is, we are 

looking for finding ( )u t
 which satisfy the following:   

            ( ( )) min ( ( )) : 0 1, 0 , such that the state equations are satisfied} ,fu t u t u t t =                

subject to the Caputo fractional equations as following                          
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    Now, the first step is constructing the following Hamiltonian function: 
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     After that, we derive the necessary conditions from Eq. (5) as follows: 
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And 1 2 3( ) ( ) ( ) 0f f fp t p t p t= = =  are the Lagrange multipliers. 

Theorem 1 Consider 
*u  is optimal control with the corresponding state 

* *,S I  and 
*R  then there 

exist
1 2,p p  and 

3p satisfies the following: 
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             3 3( ) ( )
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With transversality conditions 

             1 2 3( ) ( ) ( ) 0f f fp t p t p t= = =                                                                                            (13) 

Hence, 
*u  has the following formula: 
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Proof: By definition the Hamiltonian function H , we get 
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By using Pontryagin’s minimum principle with delay we can get 
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And the transversality conditions 1 2 3( ) ( ) ( ) 0f f fp t p t p t= = = , and 
*u  can be obtained as follows: 

                [0, ]* *

( ) ( )
( ) 0,

( ) ( )ft

H t H t
t

u t u t





−

  +
+ =

  −
            (20) 

                
* *

[0,t ] 3 1( ) ( ) ( ( ) ( )) ( ) 0,
f

Du t t p t p t S t  −+ − − − =   (21) 

                
* *1 3

[0, ]

( ( ) ( ))
( ) ( ) ( ).

ft

p t p t
u t t S t

D


 
−

− − −
=   (22) 

Since 0 1u   then we can rewrite 
*u in the Eq. (22) as follow 

 * *1 3
[0, ]

( ( ) ( )
( ) max(0,min(1, ( ) ( ))).

ft

p t p t
u t t S t

D


 
−

+ − +
=                                                        (23) 

3 Numerical Simulations 

In this section, we investigate the effect of optimal strategy on the delay fractional SIR model 

using the forward and backward fractional Euler method. This method provides a numerical 

solution for any specific time interval. The MAPLE 2020 software has been used to make this 

simulation. Here, all computations are performed by implemeenting real data based on influenza 

A (H1N1) in Morocco as described in Table 1 and Table 2.  

Table 1: model parameters and control 

Parameters Value Reference 

 0.3059  [27] 

 1174.14  [27] 

d 
53.9139 10−  [27] 

 0.2  [27] 

 0.0063  [28] 

 10  [28] 

u  0 1−   variable Assessment 
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Table 2: The initial conditions for the variables for SIR  model 

Variable Initial values 

( )S t  6(0) 30 10S =   

( )I t  (0) 30I =  

( )R t  (0) 28R =  

 

Using numerical simulation results, the key outcomes have been graphically presented. The main 

results of the above analysis can be summarized by drawing some figures to explain the effect of 

the optimal vaccination strategy. Indeed, Figure 1 and Figure 2 show that in the case of control, 

the number of susceptible individuals S  decreases more rapidly at the end of the vaccination period 

than with no vaccination process. However, the infected number of individuals I  with and without 

control is depicted in Figure 3 and Figure 4. It demonstrates that when the optimal vaccination 

strategy has been used, the number of infected individuals I  decreases dramatically, whereas, in 

the without of control, the infected number of individuals I increases. Also, the removed R  

number with and without control is depicted in Figure 5 and Figure 6. It demonstrates that when 

the optimal vaccination strategy has been used, the removed number R of people will be increased 

dramatically, whereas, in the without control, the removed number R of people will be increased 

slowly. The process of the proposed method is depicted in the algorithm below. 
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                   Figure 1: Represents the Susceptible with control.              

 

Figure 2: Represents the Susceptible without control.     
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Figure 3: Represents the Infected with control. 

 

                           Figure 4: Represents the Infected without control. 

 

 

 

http://creativecommons.org/licenses/by-nc/4.0/


601-588)(2023)3(40Bas J Sci                                                                                         Mohammed S. Kadhim 

597 
 

                    This article is an open access article distributed under 

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license) 

).nc/4.0/-http://creativecommons.org/licenses/by( 

 

  

Figure 5: Represents the Removed with control. 

 

 

                   Figure 6: Represents the Removed without control. 
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Figure 7: Represents the optimal control. 

4 Conclusions 

This study presents a Caputo fractional SIR epidemiological model that incorporates a time delay 

representing the amount of time necessary for individuals to transition from the susceptible class 

to the recovered class after receiving vaccination. The goal of this paper is to build an algorithm 

for solving the fractional SIR model with time delay. Also, the fractional-order optimal necessary 

conditions were derived using the Pontryagin minimum principle. We used the forward and 

backward Euler method to get the optimal solution. The numerical simulation was carried out by 

making use of the optimization method in Maple 20. The purpose of this was to investigate the 

behavior of the proposed model and how the combination of control u affects it. In addition to this, 

we investigated how this model is affected by the memory property of fractional derivatives, which 

is represented by the order of the fractional derivative. 
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 مع تأخير الوقت  كسريال SIR من خلال نموذج A (H1N1) السيطرة على الأنفلونزا

 محمد ساري كاظم 

قسم الرياضيات ،كلية العلوم ،جامعة البصرة   

 المستخلص 

  A (H1N1)الهدف من هذه المقالة هو صياغة نموذج رياضي لعمل إستراتيجية تطعيم من أجل السيطرة على تفشي الأنفلونزا  

نموذج   تعديل  تم   ، الغرض  لهذا  نشطًا.  ليكون  اللقاح  الذي يستغرقه  الوقت  الاعتبار  في  الأخذ  ، مع    SIRعبر نموذج كسري 

.  )متغير اللقاح( مع تأخير زمني على جانبي كل معادلة ، وإضافة متغير التحكم الزمن، وتوحيد  ة كابوتو الكسريةباستخدام مشتق

  ت استخدام  ثم    تم استخدام نظرية التحكم الأمثل لبناء خوارزمية تمكننا من تحديد استراتيجية التطعيم المثلى.وفي الوقت نفسه ،  

المحاكاة العددية على بيانات من تجربة المغرب مع الأنفلونزا    تمدتاععدديًا.    لامثلا  للإيجاد الح   خلفيةوالالامامية  طريقة أويلر  

(A (H1N1 . 
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