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1. Introduction

In this section, the periodic hyperbolic deferential initial control equation presented, as follows:

(0%u
F TR D;(a;j(t,x,u)D;u) — g(x,t,u) = f(x,1) (1)
4 g—z =0, (n,t) € 30 x (0,T) 2)
u(x,0) = uq(x), x €N 3
\u'(x,0) =u'(x,T), x € Q. (€))

And Q is in a bounded domain R™ with 9 as smooth boundary, the outward normal derivative
on 99 denotes by aa_n ,Qw = Q% (0,T). The diffusion terms D;( a;;(x, t,u )D;u) represent the
effect of dispersion description in many articles such as [1],[2], and u; (x) is nonnegative control

function and satisfy u, € W,"*(Q).
Assume the following conditions:

a. a;(.,.,u)= aij(.,.,u)eCW((_zw), and 0<A < A are two constants 3 1|&|? <
a;j(x,t,u)é;é; < Al&]?, the class of functions which are continuous in Q x R is denoted
by C,,(Q,,)and of w — periodic with respect to t. Furthermore, the continuity of
a;;(.,.,u) respected to u.

b. g(x,t,u) is Holder continuous in Q X R x R, periodic in t with a period T and satisfied

g(x, t,u)u < bylu|*+* with constant b, > 0 and 0< «a < 1.
c. f(x,t)eCr(Q,)NL™ (O, T; Wy (Q)),f(x, t) > 0 for Q x R, where C(Q,,) be the set

of functions are continuous in O x R and w — periodic with respect to t.

Many studies have been published on many forms of hyperbolic differential equations with
various features and noteworthy results, such as [3], which investigates multipoint boundary value
problems with nonlocal beginning conditions for hyperbolic deferential problems using various
techniques. In [4,] the Impulsive System with Periodic Problem for a Hyperbolic Equation has
been thoroughly studied. Relationship of periodic problem for the system of hyperbolic equations
with finite time delay and the family of periodic problems for the system of ordinary differential

equations with finite delay is established in [5], has been studied periodic solutions in terms of
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Jacobi elliptic functions as well as the corresponding hyperbolic soliton solutions in [6], the
optimal boundary control problems of the turnpike phenomenon corresponding to hyperbolic
systems have been studied and computed. Investigated a degenerate hyperbolic wave equation
with Neumann boundary conditions and bilinear control in their paper. In [7], they have a non-
hyperbolic singularity at the origin of arbitrary degeneracy and they studied a Boundary control of
hyperbolic system(1)—(4). In [9], the diffusion-reaction equation is transformed into a 2 x2 system of
coupled parabolic PDEs with exotic boundary conditions. Finally in [13], studied the behavior of the
solution of the Cauchy problem for both homogeneous and inhomogeneous hyperbolic equations,
as well as the behavior of the solution of a mixed initial-boundary value problem for the same
equations, are studied. In this paper, the existence of the solution of periodic hyperbolic problem
with control boundary functions (1) - (4) is shown, and it is shown that the solution is uniformly
bounded. The existence under some conditions is sufficiently to grantee the nontrivial periodic
solutions of the system (1)—(4). Hence, the following definition to the solutions of the problem (1)
— (4) is giving in the section 2.

2. Main results
In this section, certain results are presented that explain the existence of a solution to the periodic
hyperbolic deferential initial control equation, which requires the following generalized solution
specification.
Definition (2.1):

The solution of Egs. (1)- (4) is a nonnegative continuous vector-valued function (u,v) that is

satisfied, forany 0 <t < T, @ € C}( Qp) with @ | 2 X [0,T) = 0

%@
fqu‘FDi(aij(X,t,U)Dju) + g(X,u)(PdX dt
Qr

= Ju(x,t)cp(x,r)dx—Jul(x)(pl(x, 0)dx (5)

Q Q
where Qp = Q % (0, T).
Theorem (2.1):

Consider following the periodic hyperbolic deferential initial control equations (1-4)

and g€[0,1], then[u(t) || o gp) < R where R is a positive constant independent of o.
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Proof:

2

u
Fre) u™*? + Dy (a;;(t, x, ) Dyu u™*? = —um™*2g(x,u) + u™*f(x,t)

1 azum+3

From (m+2)(m+3) at?

2 2
= [(m + 2) u™*t? (a_u) +umtz 22

1
m+2 ot at?

um+2 aZu

m+2 0t2

= um™lvu+

Thus

1 d%u
(m+3) at?

2 62u

um+3 _ (m + 2) um+1 Vu = u™m* T

Therefor

1 92
" ﬁ U™ — (m 4 2) U™t vy + (aij(t» X, u)Dju Du™*?

= —u™2g(x,u) + u™?f(x,t)

1 0%u

m+3 ot? w3 — (m+2) u™ Vu + (a8 x, WDu (m+ 2) W D

= —u™2g(x,u) + U2 f(x,t)

1 0%u
7 U™ — (m+ 2) U™ Vu + a8, x, w) (m + 2)|Vul? uf*tt

= —u™2g(x,u) + u™?f(x,t)

1 0d%u m+12

m+2 9t? u™? — (m+2) U™t Vu + ag;(t x, w)(m + 2) (Vuu 2

= —u™2g(x,u) + u™?f(x,t)

From

2 m+1 m+1
- V(uT+1) =u 2z Vu
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1 0%u
m+2 ot?

= —u™*2g(x,u) + u™*t?f(x,t), thus

1 0%u

m+2 0t?
= —um™2g(x,u) + u™?f(x,t)

1 0%u
m+2 at?

— (m+2) u™! Vu + (a;;(t,x, u)(m + 2) |— V(u 21+1)|

Z—(m+2)u™ Vu+ (a;(tx,u

Z—(m+2)u™ Vu+ (a;(tx,u

2

m+1 2

V(uT+1)|

) 4(m+2)
(m+3)2

m+1 2

V(uT+1)|

) 4(m+2)
(m+3)2

< bO |u|0C+1 um+2 + um+2f(x’ t) < bO |u|o<+m+3 + |u|m+1 u(t) f(x’ t)

1 0%u
m+2 at?

um+2

< by |u|*t™3 + |u|™* 1 u(t) f(x, t)

1 0%u
m+2 0t2

Jou™?dx — (m + 2) [ou™" Vudx

m+1 2
vz )|

4(m+2)
f (al](t x )( +3)2

< bo J‘Qluloc+m+3 dx + fQ|u|m+1 u(t)f(x, t) dx

from

m+1

— (m+2) u™ Vu + (a;(t,x,u)

m+1 2

4‘(m+2) V(uT+1)|

(m+3)2

(6)

(7)

[l w(Of ety dx < [Lum™?dx ) (f,f™2 deyme

1 a? ” |m+2
m+2

—(m+2) [u™"' Vudx - =

xX+m+3

o+m+3 T ||l mi%) , 10 get

< C; (llul

1 a* |42
m+2

— (m+2) [u™" Vudx

4(m+2)
(m+3)2

mi1 o2
fyCaytxu) |vaz Y|

4-(m+2)lf |V(
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< G (llullstns + llullints

(8)

m+2 _ 1 m+2 4(m+2) 4 | 1i1 |
m+2 dtz ” |m+2 (m+ 2) fﬂ m+2 V(u )dx+ (m+3)2 f V(u 2 ) dx
< G (ullZinis + llullniz
2 4(m+2) 1 2
m+2 _ m+2
— = el — V)| + A2 e ”V( ||2
< G (lullEmis + lulimiz
_1 @ mez _ m+2 4(m+2) A ” ”2
m+2 dt2 ”ul m+2 ||V(u )” + (m+3)2 V( 5

< (m+2) G (lullSEmss + |lull?il

2

dt?

2

m+1
lullmts — IV@™)| + ¢, ||V(u 2 )2

2

< (m+2) G (lullmtd + s
L Ml = 9™+, 19@™)]13

< (m+2) G (lullEimis + llullmis) . set k as follows
LASSPRNTE
k=mmmwz 7, v
2
Ll mis — V@™ + ¢ V™35 < (m+2) G (lullXini3

dtz 2 i + (€ — DIV@™)] < (m+2) Gl + lhulizt

m+1

Letu, =u z '

If0 < a<1,toget

1-x

+3
f lu(t)| <+ +3dx < (f lu(t)|™* 2dx )x+m+3 |Q|m+z

This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution- 36
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).

+ |lullmtd


http://creativecommons.org/licenses/by-nc/4.0/

ZA Al Ameer and S.Q Hasan Bas ] Sci 40(1) (2023)31-43

1 1 +2 +3)(1-
< max {1, 1002} lull5h2+° < max {1, |0} Il S Ml s
< lulljis + Cllullts ©)

> IullZ3 + (¢ — DIv@™?)|

dt2
< (m+2) C(llullmis + Cllullmis + llullinis (10)
& NI + (€2~ DIV w113

2(mp+3) 2(m+1)

< (my + 2) C(llure O3 + Cllug (ON ™2 + Jluge (DI ™*2 )

By the Gagliardo -Nirenberg inequality, to have
e (D3 < CIV we NG 11w (D110, where 0 = =€ (0,1). (11)

Noticing [|lux (DIl = || uke ()13, by (3.10), to obtain

dtz > a3 < (@ = EDIV w113 + (me + DC (g (D13

2(my+3) 2(mp+1)

+Cllue O ™*2 + Jlue (O ™2 )

z(e 1)

> @1z < @ - uk(t)llf’ llure (Ol

2(my,+3) 2(my+1)

+(my + 2)C(Ilue ONIF + Cllue ONl ™2 + Jlug (O] ™+ )

dt2

4(9 1)
dtz ”uk(t)llz <(1-Cll uk(t)lle lur—1 (DI, ¢ + (e + 2)C,(lue D13
2(my+3) 2(mp+1)
+Cllu I ™+ + [[ue (O ™2 ) (12)
Set

e = max{1, sup|lu ()13}, then
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dZ

dt?

2(py+3) %_m 4(6-1)
2 g
e (O3 < w1 P2 {(1 - IOl ™7 4,5 + 0+

2)Co (Il OIF™ + (my + 2)C,(C + 1)]
(13)

By Young’s inequality, for
-2
(my + 2)||ug (t)||Px+2 , to get that

'
q

' L o1 L

ab <ea? +e€ 7 ? (?)p’ bq,

Where p' >0,a" > 1, §+ iz 1, with
2 ) 4(6-1)
+2 —
a= w5 b=p+2,6=-2"
, Pk + 2
p =4 = g~ Pk~ 1
To get
2 2_2(Pkt1)  4p-1) 4 20-9)
6 —a —— 9 ({—
(P + DO < SHwOlly " 4,5 +C(p+ 2057 4, (14)
It is easy to see that I}im £} = +oo
_ _4(1-6)
U = 20217k = Ge-n)
From (12), (13), to have that
d2 2(pt1) g_m 4(6-1)
mp+2
—= IOl < e Ol P> {(Q = C) NweONl, ™7 24,9

(my, + 2)% C, 0%+ (my + 2)C,(C + 1)}

Thus,
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2 2 2(mg+1) 401

d? m Tmy+2z
(M +2) = e @I < (1= C) lw @I, ™ 279

+(my + 2)% Cy AVE L+ (my + 2)C,(C + 1) (15)

The periodicity of wu,, (t) implies that there exist t’ such that||u, (t)]||,, then obtain

1
lue Ol < {Gmy + 2)C,(C + D +(my + 2)% C, Avk ok

_ 2 2(pxt+l) _ 28
Where C;, = 8 perz etz

Since A_q =1, (k =1,2,), it follows that

1

k+4(1—9) G
lur(Olz < {C[(mk+2)“’< Ay ° }

my+2 4(1-0)(my+2)

= {COmy +2)%) 2k 2, "

Thus
e O < € 2% 4%, .
Where a’ > 0, therefore
In||ug(t)|l, <Infg <InC+kInB+ 2Inlg_,
Where B = 2% > 1, therefor
In|lu (Dl < InC ¥Zg 2" — 2571 InAy + InB(EfZ5(k — j)27)
< (@2¥'—1)InC + 2% 1InA, + f(k)In B, with

f(k) =2kt — 2k=1 _ | — 2 thatis,

2

k-1 k-1 S
e (O llmgez < {C77 237 BIE PR

Let k — oo, to get
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(Dl < CA2 < C(max{1, sup.|lu(®)||*})? (16)
From (10), and m,;, = 0, to get

dZ
dt?

lu@®IIZ + (€, — DIVu®II? < 2 C(llu@®IIZ + C lu®IP + llu@®ll)
According to Poincare’s inequality, to have
Co llu@®IZ < IVu@®li3
So, || is sufficiently small, to have (C; — 1) C, < 2C,, then by young’s inequality, get

d2
dt?

lu®I3 + (€1 =D G Ilu@®OI? < 2 GUu®NI? + C llu@®IP + llu@®Il)

Let2C,>C and2C, > 1,then

= 12 < 2 @I + u@®IR + lu@l)
Thus,
2
= (1 < Cllu®)2 , therefore = [la()1IZ < Cllu(t)lI3

To obtain |[u(t) || =g, < R where R=|Q|R.
To prove the following results, the following auxiliary problem has been need:

(0%u,

72 + D; ((1 — 1)yDiu + ta;;(x,t, u)Djue) +eu, —glx, t,u.) = f(x,t) (17)
0
< aljf =0, (n,t) € 09 x (0,T) (18)
ue(x,0) = u, (x), X €N (19)
\u.'(x,0) =u./(x,T), x € Q. (20)

where Qr = Q% (0,T), u;e € C*(Q) satisfy
0<u; <llwylliw@y , W (Qase—>0inue > uy , (21)
where 7 € [0,1].
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The standard parabolic theory [10] shows that (17)-(19) give a nonnegative classical solutionu,,
where the solution of Eq. (1)-(4) is a limit point of u.of Eq. (17) and (19). As a result of the same

results proving in [5], to have the results.

Corollary (2.1):

Consider Eq. (17) - (19). Then 3a positive constant R independent of the € and
3 deg (I — G(1, g(x,u.) + f(x,t),Bg,0) = 1

Where By is a ball centered at the origin with radius R in  L*(Q7).

Lemma (2.1):

Consider the problem (17)-(19).Then 3 constants r, > 0 and

e>03forany0<r<ry,e<ey,u=0G6(tgxu)+f(xt)+ (1 —-1)),admits no

nontrivial solution u satisfying 0 < |[[u|| . <7, where r independent of e.

Corollary (2.2):

Consider the problem (17)-(19).Then 3 a small constant 0 < r < R which is independent of €, T
3deg(1—-G(1,(g(x,u.) + f(x,t)),B,,0) = 0, where B, is a ball in L*(Q7).

Now, in this paper, to give the proof of the result have deg (1 — G(f(. )),f;—R, 0) = 1 is the proof

of theorem 1 using corollaries 1, and 2, to have, R > r > 0. Eq. (17)-(19) admits a nonnegative
nontrivial solution u, with r < ||u.|l < |Q|R. This can be demonstrated by combining the

regularity results [11] and a similar argument as in [12].

3. Conclusions

The proposal equations (1)-(4) with their admissible conditions suitable of their components have
been concluded as different technical and complexity than parabolic and elliptic differential
equations, and the existence of the solution is dependent on first and second derivatives, as well
as some of the special spaces that appear in the construction of the proposal equation to guaranty

the necessary properties to be the solution is satisfied.
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