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In the current investigation, the simulation of extension-thinning 

inelastic fluid flow is considered through an axisymmetric rectangular 

channel. To describe the fluid motion, usually, the mass conservation 

and conservation of momentum partial differential equations are used. 

This study presents these equations in the context of the cylindrical 

coordinate system. The key point here is that viscosity needs to be 

defined as a variable, which requires introducing an additional 

constitutive equation. Accordingly, an extension-thinning inelastic 

model, named SI-Fit-II, for treating the viscosity condition is 

presented.Numerically, the Galerkin finite element approach based on 

the artificial compression method (AC-method) is performed in this 

study. To meet the method analysis, Poiseuille flow along a circular 

channel under an isothermal state is used as a simple test problem. This 

test is conducted by taking a circular section of the pipe. The influence 

of many parameters, such as the consistency parameter and power 

index of the model, the artificial compressibility parameter (βac) and 

Reynolds number (Re) was discussed. This test is conducted by taking 

a circular section of the pipe.  
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1. Introduction  

     Non-Newtonian fluids are essential to many chemical and industrial operations in the food, 

metallurgical, polymer, and biological sectors. This kind of fluid reacts to stimuli by changing its 

viscosity. Consequently, a simple constitutive equation is used to characterize the viscosity of such 

a fluid. Typical constitutive models that demonstrate non-Newtonian behavior include the power 

law model (PLM), modified power law, cross model, Herschel–Bulkley model, Caro model, Caro–

Yasuda model, Baird–Caro model, modified Casson model, and tethering model [1-5]. Furthermore, 

non-Newtonian fluids show either shear thickening, that is, the process by which viscosity rises as 

shear increases, or shear thinning, in which the viscosity falls as shear increases.  

In this study, the flow of inelastic fluids was studied extensively, using an inelastic extensional model 

called Fit-II. This model represents one of the fundamental constitutive equations for such fluids (for 

more details, see Binding et al. [6] and Debbaut and Crochet [7]). The definition of such a model 

with extensional response is 

                   𝜇𝐸(𝜀̇) = 3𝜇0 𝑐𝑜𝑠ℎ( 𝑛𝜆𝜀̇). (1 + 3(𝑘𝜀̇)2)(𝑛−1)/2, 

where n, λ, and k are the parameters in the model that determine the extensional behaviors of the 

model, and 𝜇0 indicates the zero viscosity (for more details see [6-8]). Generally, from the structure 

of this model, one can see that the functions of viscosity are presented for extensional flows only.  

The material behavior in these types of flows, which is described by a combination of governing 

equations and the Fit-II model, represents a complicated problem. Thus, the numerical treatment is 

the essential tool to analyze this problem. Accordingly, several numerical studies have been 

conducted on such inelastic models, see for example, [6],[7], and [9]. These investigations show 

how extensive the information to researchers interested in this type of flow. 

In this study, we introduced a robust numerical algorithm to treat the governing equations that 

describe this flow. This numerical approach is performed by using the Galerkin finite element 

method based on the artificial compression method (AC-method), for short, it is called GFE-AC-

method. The main idea of AC-method is to transform the continuity equation from an elliptic 

equation to a hyperbolic equation by adding the artificial compressibility term, as will be explained 

later. Then, the resulting system can be solved directly by standard time-dependent approaches that 

are not complicated to apply in the solution. Chorin (1967) is the first person who adopted this 

method to solve the Navier-Stokes equations [10]. Later, this method has also been applied for 

solving unsteady problems (see, for example, Peyret and Taylor [11] and Kao and Yang [12]). 
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Moreover, one can view different studies of the AC-method that were conducted by combining this 

method with finite element and finite difference methods (see, for example, [11-16]). 

The main novelty in this research is the study of inelastic axisymmetric and laminar extensional fluid 

flow by using GFE-AC-method, which none of the researchers have previously shed light on. The 

effect of Reynolds number (Re) and all the parameters of the Fit-II model on the fluid behavior is 

presented as well. To test our algorithm, the Poiseuille (Ps) flow through a two-dimensional straight 

channel, under isothermal conditions, is used as an actual application. 

2. Mathematical modeling 

2.1 Motion equations 

A key formula in fluid mechanics that describes the motion of incompressible fluids is the Navier-

Stokes equations. These equations consist of continuity and momentum equations, which are 

expressed as:   

            ∇ ⋅ 𝑢 = 0,                                (1) 

 𝜌
𝜕𝑢

𝜕𝑡
= ∇ ⋅ (2𝜇(�̇�, 𝜀̇)𝑑) − 𝜌(𝑢 ⋅ ∇𝑢) − ∇𝑃.                   (2)  

Here, 𝑑 =
1

2
(𝛻𝑢 + 𝛻𝑢𝑇) is the rate of deformation tensor, P and 𝜌 are the pressure and density of 

the fluid. The dimensionless Navier-Stokes equations may be expressed using the Reynolds number, 

a crucial fluid mechanics variable that indicates the ratio of driving forces to viscous forces. The 

Reynolds number is defined using the following formula: Re = 
𝜌𝑈𝐿

𝜇
, where 𝜌, L and U are represented 

by density, length, and velocity, respectively (see [17],[18]). Therefore, the momentum conservation 

equation (2) can be reformulated as follows:  

 𝑅𝑒
𝜕𝑢

𝜕𝑡
= ∇ ⋅ (2𝜇(𝜀̇)𝑑) − 𝑅𝑒(𝑢 ⋅ ∇𝑢) − ∇𝑃.                  (3)  

Furthermore, we convert the continuity equation and the momentum conservation equation into 

cylindrical coordinates as follows: 

 
𝜕𝑢𝑟

𝜕𝑟
+

1

𝑟
𝑢𝑟 +

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝜕𝑢𝑧

𝜕𝑧
= 0.                            (4)  

𝑟-direction  

 
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝜃(

1

𝑟

𝑢𝑟

𝜕𝜃
−

1

𝑟
𝑢𝜃) + 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
=

−1

𝜌

𝜕𝑃

𝜕𝑟
+

2𝜇𝐸

𝜌

𝜕2𝑢𝑟

𝜕𝑟2 + 

          
𝜇𝐸

𝜌𝑟2

𝜕2𝑢𝑟

𝜕𝜃2 −
𝜇𝐸

𝜌𝑟2

𝜕𝑢𝜃

𝜕𝜃
+

2𝜇𝐸

𝜌𝑟

𝜕𝑢𝑟

𝜕𝑟
+

𝜇𝐸

𝜌𝑟

𝜕2𝑢𝜃

𝜕𝑧𝜕𝜃
+

𝜇𝐸

𝜌

𝜕2𝑢𝑟

𝜕𝑧2 +
𝜇𝐸

𝜌

𝜕2𝑢𝑧

𝜕𝑧𝜕𝑟
.                                               (5) 

𝜃 - direction  
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𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
+ 𝑢𝜃(

1

𝑟
𝑢𝑟 −

𝑢𝜃

𝜕𝜃
) + 𝑢𝑧

𝜕𝑢𝜃

𝜕𝑧
=

−1

𝜌𝑟

𝜕𝑃

𝜕𝜃
+

2𝜇𝐸

𝜌𝑟2

𝜕𝑢𝑟

𝜕𝜃
+ 

 
2𝜇𝐸

𝜌𝑟2

𝜕2𝑢𝜃

𝜕𝜃2 +
𝜇𝐸

𝜌

𝜕2𝑢𝜃

𝜕𝑟2 +
𝜇𝐸

𝜌𝑟

𝜕2𝑢𝑟

𝜕𝑟𝜕𝜃
+

𝜇𝐸

𝜌

𝜕2𝑢𝜃

𝜕𝑧2 +
𝜇𝐸

𝜌𝑟

𝜕2𝑢𝑧

𝜕𝑧𝜕𝜃
.            (6)  

𝑧-direction  

 
𝜕𝑢𝑧

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
+ 𝑢𝜃

1

𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
=

−1

𝜌

𝜕𝑃

𝜕𝑧
+

2𝜇𝑠

𝜌

𝜕2𝑢𝑧

𝜕𝑧2
+ 

 
𝜇𝐸

𝜌

𝜕2𝑢𝑧

𝜕𝑟2 +
𝜇𝐸

𝜌𝑟

𝜕𝑢𝑟

𝜕𝑧
+

𝜇𝐸

𝜌𝑟

𝜕𝑢𝑧

𝜕𝑟
+

𝜇𝐸

𝜌

𝜕2𝑢𝑟

𝜕𝑟𝜕𝑧
+

𝜇𝐸

𝜌𝑟2

𝜕2𝑢𝑧

𝜕𝜃2 +
𝜇𝐸

𝜌𝑟

𝜕2𝑢𝜃

𝜕𝜃𝜕𝑧
.           (7)  

2.2 Inelastic model 

As we mentioned above, the extensional inelastic nonlinear model (Fit-II) is employed to 

characterize the viscosity behavior for the fluid in the current study. This model may be expressed 

mathematically as:  

           𝜇𝐸(𝜀̇) = 3𝜇0 𝑐𝑜𝑠ℎ( 𝑛𝜆𝜀̇). (1 + 3(𝑘𝜀̇)2)(𝑛−1)/2                          (8)  

All the parameters are defined in the introduction above, while here, we need to define the strain rate 

𝜀̇ as: 

          𝜀 ̇ = 3
𝐼𝐼𝐼𝑑

𝐼𝐼𝑑
,                 (9) 

Where, 𝐼𝐼𝑑 and 𝐼𝐼𝐼𝑑 represent the second and third invariants, which are presented in cylindrical 

coordinates as follows: (see [16]) 

 𝐼𝐼𝑑 =
1

2
𝑡𝑟(𝑑2) =

1

2
{(

𝜕𝑢𝑟

𝜕𝑟
)2 + (

𝜕𝑢𝑧

𝜕𝑧
)2 + (

𝑢𝑟

𝑟
)2 +

1

2
(
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
)2},                   (10)                         

 and 

 𝐼𝐼𝐼𝑑 = 𝑑𝑒𝑡(𝑑) =
𝑢𝑟

𝑟
{
𝜕𝑢𝑟

𝜕𝑟

𝜕𝑢𝑧

𝜕𝑧
−

1

4
(
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
)2}.                                      (11)                            

2.3 Artificial Compressibility Method (AC-Method) 

The elliptic partial compression equation can be converted into a hyperbolic compressible partial 

differential form by introducing an artificial component into the continuity equation (4). Once the 

steady-state solution is reached, the artificial compression term will be removed. The incorporation 

of this component into the continuity equation can convert the Navier-Stokes equation into a mixed 

parabolic-hyperbolic equation, which can then be solved using a conventional time-based method. 

One way to express this approach is to apply the bogus term to the continuity equation. 

 

        
𝜕𝜌

𝜕𝑡
+

𝜕𝑢𝑟

𝜕𝑟
+

1

𝑟
𝑢𝑟 +

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝜕𝑢𝑧

𝜕𝑧
= 0.            (12)                         

The relation between the artificial density and pressure is provided by the state equation that follows: 
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 𝑃 = 𝜌𝛽𝑎𝑐,               (13)             

where, 𝛽𝑎𝑐 is the synthetic compressibility parameter; 0 <
1

𝛽𝑎𝑐
<< 1. By replacing  

Eq. (13) into Eq. (12), we compile the continuity formula in the format: 

 
1

𝛽𝑎𝑐

𝜕𝑃

𝜕𝑡
+

𝜕𝑢𝑟

𝜕𝑟
+

1

𝑟
𝑢𝑟 +

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝜕𝑢𝑧

𝜕𝑧
= 0.           (14) 

Therefore, the governing equations for the present study consist of equations (5-7) and (14).      

3. Numerical method and test problem  

A common numerical method for resolving the partial differential equations in fluid is the Galerkin 

finite element method. The principal stages of this method are applied to solve equations (5)-(7) and 

equation (14). The essential step is to find the variational formulation of the governing equations, 

using suitable weight functions, and compute the integral. After that, we need to define an 

appropriate interpolation (or shape) function, which is dependent on the number of nodes in the 

element. Since the element shape in the mesh that we used is a triangle with three vertex nodes and 

three middle points. Thus, we used a quadratic shape function to approximate the velocity 

component, while a linear shape function is utilized to approximate the pressure component. These 

functions can be defined in cylindrical coordinates as: 

(a) The quadratic shape function for velocity. 

 

[
 
 
 
 
 
𝜓1

𝜓2

𝜓3

𝜓4

𝜓5

𝜓6]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐿1
2 − 𝐿1(𝐿2 + 𝐿3)

𝐿2
2 − 𝐿2(𝐿3 + 𝐿1)

𝐿3
2 − 𝐿3(𝐿1 + 𝐿2)

4𝐿1𝐿2

4𝐿2𝐿3

4𝐿3𝐿1 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
1 0 0 −1   0 −1
0 1 0 −1 −1   0
0 0 1   0 −1 −1
0 0 0   4   0   0
0 0 0   0   4   0
0 0 0   0   0   4 ]

 
 
 
 
 

[
 
 
 
 
 
 
𝐿1
2

𝐿2
2

𝐿3
2

𝐿1𝐿2

𝐿2𝐿3

𝐿3𝐿1]
 
 
 
 
 
 

.                              (15)         

(b) The linear shape function for pressure 

 [

𝜙1

𝜙2

𝜙3

] = [
𝐿1

𝐿2

𝐿3

].                                                                      (16)                                                            

Such that, 𝐿𝑗 =
1

2𝐴𝑎𝑟𝑒𝑎
(𝑎𝑗 + 𝑏𝑗𝑟 + 𝑐𝑗𝑧),        (∀ 𝑗 = 1,2,3). 

Where, 𝐴𝑎𝑟𝑒𝑎 is the area of the triangular element, and 𝑎𝑖 , 𝑏𝑖 and 𝑐𝑖 are coefficients. For this, from 

the divergence theorem and reordering the items, partial differential equations are solved using the 

weak version of the finite element technique, which involves rewriting the problem to include an 

optional test function that permits the minimization of the necessary conditions. 

[𝑀𝑝][�̇�] + [𝑄1
𝜏][𝑢𝑟] + [𝑞][𝑢𝑟] + [𝑄2

𝜏][𝑢𝜃] + [𝑄3
𝜏][𝑢𝑧] = 0,                                            (17)                                   
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 [𝑀][�̇�𝑟] + [𝐶(𝑢𝑟 , 𝑢𝜃, 𝑢𝑧)][𝑢𝑟] + [𝑐𝜃][𝑢𝜃] −
1

𝑅𝑒
[𝑄1][𝑃] + [𝐾𝑟𝑟][𝑢𝑟] + [𝐾21][𝑢𝜃] 

 +[𝐾22][𝑢𝑟] + [𝑘𝑟][𝑢𝑟] + [𝑘𝜃][𝑢𝜃] + [𝐾31][𝑢𝑧] + [𝐾33][𝑢𝑟] = 0,                              (18)                 

 [𝑀][�̇�𝜃] + [𝐶(𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧)][𝑢𝜃] + [𝑐𝑟][𝑢𝑟] −
1

𝑅𝑒
[𝑄2][𝑃] + [𝐾11][𝑢𝜃] + [𝐾12][𝑢𝑟] 

 +[𝑘𝜃][𝑢𝑟] + [𝐾𝜃𝜃][𝑢𝜃] + [𝐾33][𝑢𝜃] + [𝐾32][𝑢𝑧] = 0,                                          (19)                         

 [𝑀][�̇�𝑧] + [𝐶(𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧)][𝑢𝑧] −
1

𝑅𝑒
[𝑄3][𝑃] + [𝐾11][𝑢𝑧] + [𝐾13][𝑢𝑟] −

                             [𝑘3][𝑢𝑟] − [𝑘1][𝑢𝑧] + [𝐾22][𝑢𝑧] + [𝐾23][𝑢𝜃] + [𝐾𝑧𝑧][𝑢𝑧] = 0.                  (20)       

Such that all the definitions of the matrices are: 

mass matrix: 

 [𝑀] = ∫
Ω𝑒 𝜓𝜓𝜏𝑑Ω = ∫

𝐴𝑒 ∫
2𝜋

0
[𝑁][𝐻][𝐻𝜏][𝑁𝜏]𝑟𝑑𝜃𝑑𝐴 = 2𝜋 ∫

𝐴𝑒 [𝑁][𝐻][𝑁𝜏][𝐻𝜏]𝑟𝑑𝐴, 

where, 

 𝑟𝑚 =
𝑟1+𝑟2+𝑟3

3
, 𝑧𝑚 =

𝑧1+𝑧2+𝑧3

3
. 

Thus, 

 [𝑀] = 2𝜋𝑟𝑚[𝑁][𝐻][𝐻𝜏][𝑁𝜏] ∫
𝐴𝑒 𝐴 = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐻𝜏][𝑁𝜏],                             (21)     

 [𝑀𝑝] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
1

𝛽𝑎𝑐
[𝐸][𝐸𝜏].                                                                              (22) 

Moreover, the taken from style of form functions may be mentioned, like: 

 
𝜕𝜓

𝜕𝑟
= [𝑁]

𝜕[𝐻]

𝜕𝑟
= [𝑁][𝐵][𝐸], 

 
𝜕𝜓

𝜕𝜃
= 0, 

 
𝜕𝜓

𝜕𝑧
= [𝑁]

𝜕[𝐻]

𝜕𝑧
= [𝑁][𝐶][𝐸], 

where, 

[𝐵] =
1

2𝐴𝑎𝑟𝑒𝑎

[
 
 
 
 
 
2𝑏1 0 0
0 2𝑏2 0
0 0 2𝑏3

𝑏2 𝑏1 0
0 𝑏3 𝑏2

𝑏3 0 𝑏1 ]
 
 
 
 
 

, [𝐶] =
1

2𝐴𝑎𝑟𝑒𝑎

[
 
 
 
 
 
2𝑐1 0 0
0 2𝑐2 0
0 0 2𝑐3

𝑐2 𝑐1 0
0 𝑐3 𝑐2

𝑐3 0 𝑐1 ]
 
 
 
 
 

. 

diffusion matrix: 

 [𝐾𝑟𝑟] =
4𝜋

𝑅𝑒
∫ 𝜇𝐸[𝑁][𝐵][𝐸][𝐸𝜏][𝐵𝜏][𝑁𝜏]𝑟𝑑𝐴

 

𝐴𝑒 ,                    (23) 

 [𝐾𝑧𝑧] =
4𝜋

𝑅𝑒
∫ 𝜇𝐸[𝑁][𝐶][𝐸][𝐸𝜏][𝐶𝜏][𝑁𝜏]𝑟𝑑𝐴,

 

𝐴𝑒                     (24) 

 [𝐾11] =
2𝜋

𝑅𝑒
∫ 𝜇𝐸[𝑁][𝐵][𝐸][𝐸𝜏][𝐵𝜏][𝑁𝜏]𝑟𝑑𝐴,

 

𝐴𝑒                                             (25) 
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 [𝐾33] =
2𝜋

𝑅𝑒
∫ 𝜇𝐸[𝑁][𝐶][𝐸][𝐸𝜏][𝐶𝜏][𝑁𝜏]𝑟𝑑𝐴

 

𝐴𝑒 ,                     (26) 

 [𝐾13] =
2𝜋

𝑅𝑒
∫ 𝜇𝐸[𝑁][𝐵][𝐸][𝐸𝜏][𝐶𝜏][𝑁𝜏]𝑟𝑑𝐴

 

𝐴𝑒 ,                                (27) 

 [𝐾31] =
4𝜋

𝑅𝑒
∫ 𝜇𝐸[𝑁][𝐶][𝐸][𝐸𝜏][𝐵𝜏][𝑁𝜏]𝑟𝑑𝐴

 

𝐴𝑒 ,                                (28) 

 [𝑘𝑟] =
4𝜋

𝑅𝑒
∫ 𝜇𝐸[𝑁][𝐻][𝐸𝜏][𝐵𝜏][𝑁𝜏]𝑟𝑑𝐴

 

𝐴𝑒 ,                                 (29) 

 [𝑘1] =
2𝜋

𝑅𝑒
∫ 𝜇𝐸[𝑁][𝐻][𝐸𝜏][𝐵𝜏][𝑁𝜏]𝑟𝑑𝐴

 

𝐴𝑒 ,                                                       (30) 

 [𝑘3] =
2𝜋

𝑅𝑒
∫ 𝜇𝐸[𝑁][𝐻][𝐸𝜏][𝐶𝜏][𝑁𝜏]𝑟𝑑𝐴

 

𝐴𝑒 ,                                 (31) 

 [𝐾𝜃𝜃] = 0, [𝐾22] = 0, [𝐾12] = 0, [𝐾21] = 0, [𝐾23] = 0, [𝐾32] = 0, [𝑘2] = 0, [𝑘𝜃] = 0. 

gradient matrix: 

 [𝑄1] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐵][𝐸][𝐸𝜏],                                  (32) 

 [𝑄3] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐶][𝐸][𝐸𝜏],                                  (33) 

 [𝑞] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝐸][𝐻𝜏][𝑁𝜏],                                  (34) 

 [𝑄2] = 0. 

convective matrix:  

 [𝐶𝑟(𝑢𝑟)] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐻𝜏][𝑁𝜏][𝑢𝑟][𝐸
𝜏][𝐵𝜏][𝑁𝜏],                                 (35) 

 [𝐶𝑧(𝑢𝑧)] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐻𝜏][𝑁𝜏][𝑢𝑧][𝐸
𝜏][𝐶𝜏][𝑁𝜏],                                 (36) 

 [𝐶𝜃] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐻𝜏][𝑁𝜏][𝑢𝜃][𝐻𝜏][𝑁𝜏],                         (37) 

 [𝐶𝑟] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐻𝜏][𝑁𝜏][𝑢𝜃][𝐻𝜏][𝑁𝜏],                         (38) 

 [𝐶𝜃(𝑢𝜃)] = 0. 

The fact that the actual test in the now case is the indirect item that needed a well-done solution. To 

address this indirect item of equations (17)-(20), the Newton-Raphson technique is used. As the 

score, the order of the equation is going to be supplanted through the coming equation: 

 [

𝑀 0 0 0
0 𝑀 0 0
0 0 𝑀 0
0 0 0 𝑀𝑝

] [

�̇�𝑟

�̇�𝜃

�̇�𝑧

�̇�

]  

[
 
 
 
 
 
 
𝜕𝑅1

𝜕𝑢𝑟

𝜕𝑅1

𝜕𝑢𝜃

𝜕𝑅1

𝜕𝑢𝑧

𝜕𝑅1

𝜕𝑃

𝜕𝑅2

𝜕𝑢𝑟

𝜕𝑅2

𝜕𝑢𝜃

𝜕𝑅2

𝜕𝑢𝑧

𝜕𝑅2

𝜕𝑃

𝜕𝑅3

𝜕𝑢𝑟

𝜕𝑅3

𝜕𝑢𝜃

𝜕𝑅3

𝜕𝑢𝑧

𝜕𝑅3

𝜕𝑃

𝜕𝑅4

𝜕𝑢𝑟

𝜕𝑅4

𝜕𝑢𝜃

𝜕𝑅4

𝜕𝑢𝑧

𝜕𝑅4

𝜕𝑃 ]
 
 
 
 
 
 

[
 
 
 
 
𝑢𝑟

𝑛+1 − 𝑢𝑟
𝑛

𝑢𝜃
𝑛+1 − 𝑢𝜃

𝑛

𝑢𝑧
𝑛+1 − 𝑢𝑧

𝑛

𝑝𝑛+1 − 𝑃𝑛]
 
 
 
 

= − [

𝑅1

𝑅2

𝑅3

𝑅4

],      (39) 

 [𝑀]�̇� + [𝑆(𝑈)] △ 𝑈 = −[𝑅].                                                                                        (40) 
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Boundary conditions (BCs): To complete the setting of the problem, we need to define the boundary 

conditions that are imposed on the surface of the straight channel. Homogeneous Dirichlet BCs are 

applied on the top and bottom of the channel, where the axial and radial velocities are zero on the 

top wall, with vanishing radial velocity only on the axisymmetric line. Since we are dealing with the 

laminar flow, the Poiseuille (Ps) flow is applied at the inlet of the channel. 

4. Results 

The numerical results obtained using the GFE-AC-method focused mainly on the impact of different 

parameters of the inelastic model under consideration. Particularly, the focus here is on the effect of 

power index (n), constant for the fluid (λ), and Reynolds number (Re). 

n-variation: Figure 1 (a) shows the cross-channel axial velocity, while  1 (b) depicts pressure along 

the centerline of the channel in extension thinning for fixed {𝜇0= 1, k = 1, Re=100, λ=15, 𝛽𝑎𝑐=100}. 

For the axial velocity, we detected that it maintained its behavior as a Poiseuille (Ps) flow until 

reaching steady state, with a slight increase in the case of a decrease in n < 1. On the other hand, 

increased pressure can enhance the flow of extension-thinning fluids by reducing viscosity, thereby 

allowing for easier movement through systems. Accordingly, from the pressure profile, one can see 

that a decrease in the level of power-index  (𝑛)leads to a raise in the pressure due to the dominant 

extension-thinning influence.  For example, the profile gives an increase in pressure of O(35%) from 

n = 0.8 to n = 0.2, O(30%) from n = 0.8 to n = 0.4, and O(22%) from n = 0.8 to n = 0.6. In addition, 

Figure 1c reflects the effect power index on the viscosity again in the case of extension-thinning (n 

< 1). The results demonstrated that as n decreases, the level of viscosity decreases, with a noticeable 

rise at n = 0.8, due to the thinning effect. Also, one can see that the peak in the viscosity always 

occurs at the center of the channel.    
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( a ) ( b ) 

Figure 1: Axial velocity, pressure and viscosity; n-variation, 𝜇0 = 1, k = 1, Re=100,  𝜆=15, 

𝛽𝑎𝑐 = 100 . 
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k-variation: The fluid may flow more consistently when the consistency parameter (k) is raised, 

which lowers losses from turbulence and undulations. A high consistency parameter may also help 

to decrease surface effects and improve flow stability because of the compact dimensions, which 

would enable higher velocity. From Figure 2(a-b) and with the same setting of parameters that are 

usually used, one can observe that the effect of the consistency index (k) was very modest on both 

velocity and pressure. Furthermore, Figure 2c illustrates the behaviour of viscosity under k-variation. 

The profiles reveal that a reduction in k results in an increase in the level of viscosity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

(c) 

Figure 2: Axial velocity, pressure and viscosity with k-variation, 𝜇0 = 1, Re=100, n=0.6,  𝜆 

=15,   
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Re-variation: The effect of Reynolds number (Re) on the velocity is presented in Figure 3 with {𝜇0 

= 1, k = 1, n=0.6, λ=15, 𝛽𝑎𝑐=100}. In laminar flow through a channel, the velocity profile is parabolic 

with faster near the center and decreases gradually to zero at the channel wall due to the no-slip 

condition. Here, as anticipated, results show that increasing Re causes a significant rise in the level 

of maximum velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜆-variation: In the case of extension-thinning flow, the cross-channel axial velocity and pressure 

are displayed in Figure 4 (a-b) with fixed {𝜇0 = 1, k = 1, Re=100, n=0.6, 𝛽𝑎𝑐=100} and λ variation 

{1, 10, 15, 20}. Since the inelastic parameter (λ) represents the resistance to fluid flow between two 

surfaces in contact. Accordingly, a very slow change in velocity is observed as the inelastic 

parameter(λ) increases. In addition to maintaining the flow rate, the same behavior has occurred for 

pressure, where a significant decrease in pressure level has appeared as the inelastic parameter (λ) 

increased.   

 

 

 

 

 

  

 

Figure 3: Velocity profiles with Re-variation, 𝜇0 = 1, k = 1, n=0.6,  

𝜆=15, 𝛽𝑎𝑐 = 100 . 
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𝛽𝑎𝑐-variation: The effect of the artificial compressibility parameter {𝛽𝑎𝑐=10, 50, 80, 100}with fixed 

{𝜇0 = 1, k = 1, n=0.6, Re=100, 𝜆 = 15 } on the level of axial velocity and pressure is presented in 

Figure 5(a-b). The axial velocity profile is plotted at z=1.5 (Figure 5a), while along the centerline 

was the plotting of pressure (Figure 5a). From observing the results, we found that there is a different 

influence of 𝛽𝑎𝑐 on both axial velocity and pressure, as the effect of the parameter is directly 

proportional to velocity and inversely proportional to pressure. The reason for this is due to a fluid 

moving more swiftly when artificial compressibility is applied because the pressure pushes the fluid 

molecules, and the flow rate rises because of the fluid molecules moving more quickly. Additionally, 

in order to optimize fluid flow and establish a dynamic equilibrium for steady flow, artificial 

compressibility causes the natural pressure inside the cylinder to be modified. There is also an 

interesting point and striking observation that was made in the pressure value at 𝛽𝑎𝑐=10, which is 

that the pressure value at the region close to the inlet of the channel is less than the level of the other 

values, and then it begins to gradually increase after the first quarter of the channel to take the general 

situation consistent with the results. Moreover, the impact of 𝛽𝑎𝑐 on the viscosity through a straight 

line parallel to the axisymmetric line is presented as well in Figure 5c with the same setting of 

parameters. The comparative plots show that there is a significant effect on viscosity with a small 

𝛽𝑎𝑐=10, after, which the differences drop away with a gradual decrease observed when the 

( a ) ( b ) 

Figure 4: Axial velocity and pressure with 𝜆-variation, 𝜇0 = 1, k = 1, n=0.6,  Re=100, 𝛽𝑎𝑐 =

100 . 
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𝛽𝑎𝑐 −value increases to take close values of about 3 units. For instance, one can observe that a 

reduction in the level of viscosity of O(77%) from 𝛽𝑎𝑐=10 to 𝛽𝑎𝑐=100 has occurred.    

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

In this study, a numerical simulation of an inelastic and incompressible fluid is conducted utilizing 

the Galerkin finite element method in a cylindrical coordinate system. The numerical method is 

employed based on the artificial compressibility approach to facilitate the conversion process of the 

(a) (b) 

(c) 

Figure 5: Axial velocity, pressure and viscosity with  𝛽𝑎𝑐-variation, 𝜇0 = 1, k = 1, n=0.6, 

Re=100, 𝜆 = 15 . 
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incompressible continuity equation from the elliptic equation to a hyperbolic compressible equation 

by adding the artificial compressibility factor to the continuity equation is the method. This change 

makes it possible to handle numerical solutions with greater flexibility and helps to prevent the issues 

brought on by stiff situations. The impact of Reynolds number (Re), power index (n), consistency 

coefficient (k), artificial compressibility coefficient (𝛽𝑎𝑐), and λ on the behavior of solution 

components is tested. The results show the effect of extension-thinning on the solutions.  
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المرققة: طريقة العناصر المحدودة لغالركين-ية لتدفق السوائل غير المرنة المتمددةدراسة عدد  

جبار غانم و علاء حسن عبد اللهاحمد   

البصرةجامعة  –كلية العلوم  -الرياضياتقسم   

 المستخلص

ي هذا البحث، نجُري محاكاةً لتدفق السوائل غير المرنة بالتمدد والترقق عبر قناة مستطيلة محورية التناظر. ولوصف حركة السوائل، ف

لكتلة وحفظ الزخم. وتقُدم هذه الدراسة هذه المعادلات في سياق نظام الإحداثيات تسُتخدم عادةً معادلات التفاضل الجزئي لحفظ ا

 مما يتطلب إدخال معادلة تأسيسية إضافية. وبناءً على ذلك، والنقطة الأساسية هنا هي ضرورة تعريف اللزوجة كمتغير،.  الأسطواني

وفي هذه الدراسة، تطُبق طريقة العناصر  .  عالجة حالة اللزوجةلم                   يسمىيقُدم نموذج غير مرن بالتمدد والترقق، 

ولتلبية تحليل الطريقة، يسُتخدم تدفق بوازوي على طول قناة دائرية .  المحدودة لغالركين، لقائمة على طريقة الضغط الاصطناعي

من الأنبوب. تمت مناقشة تأثير العديد من  في حالة متساوية الحرارة كمسألة اختبار بسيطة. ويجُرى هذا الاختبار بأخذ مقطع دائري

يجُرى  .         ورقم رينولدز           ومعامل الانضغاط الاصطناعي   المعلمات، مثل معامل الاتساق ومؤشر القدرة للنموذج،

. هذا الاختبار بأخذ مقطع دائري من الأنبوب  
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