
412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

387

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

Development and analysis of the Lagrange interpolation method for solving

multidimensional nonlinear equations

Ali Abdulhussein Hlail Alebadi*

Department of Mathematics, College of Mathematical and Computer Sciences, University of

Islamic Azad, Isfahan, IRAN

*Corresponding author E-mail: aliali66t55@gmail.com

https://doi.org/10.29072/basjs.20240215

Received 10 Nov 2024; Received in revised form 29 Nov 2024; Accepted 17 Dec 2024, Published

31 Dec 2024

ARTICLE INFO ABSTRACT

Keywords

Lagrange

interpolation;

Multidimensional

nonlinear equations;

Numerical methods;

Error estimates

The development of the Lagrange interpolation methodology and its

analysis can enhance its accuracy, efficiency, and flexibility in solving

multidimensional nonlinear equations. The article discusses the

development and analysis of the Lagrange interpolation method as an

effective means of solving multidimensional nonlinear equations. This

method is based on estimating the functional values from known

points, which provides accurate and fast solutions to complex

mathematical problems. The Lagrange interpolation code has been

improved for higher performance and greater efficiency through

techniques such as the use of the polynomial database.

http://creativecommons.org/licenses/by-nc/4.0/
mailto:aliali66t55@gmail.com

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

388

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

1. Introduction

 Interpolation methods are one of the basic mathematical tools in numerical analysis, as they are

used to calculate unknown values from a set of known points. One of the most common of these

methods is the Lagrange interpolation method, which allows estimating a function based on its

values at specific points. This method can be used in a wide range of applications, including

multidimensional nonlinear systems that are difficult to solve using traditional methods. Several

studies have demonstrated the benefits of using the Lagrange method in solving mathematical

equations. The effectiveness of the interpolation method in improving the accuracy of environmental

models was analyzed by using different measurement points. The results showed that the method

performs well with discrete data, which led to improved model predictions. The method relies on

polynomial functions to create an accurate representation of the underlying data, making it

invaluable in modeling and prediction scenarios. Given the significance of Lagrange interpolation,

numerous studies have emerged to explore its applications, improvements, and theoretical

foundations. Below is a summary of key research contributions that demonstrate the breadth and

depth of this mathematical technique. Jiwari introduced two differential quadrature methods aimed

at approximating solutions for one- and two-dimensional hyperbolic partial differential equations

under Dirichlet and Neumann boundary conditions. These methods utilize Lagrange interpolation

and modified cubic B-splines, respectively, effectively transforming the hyperbolic problem into a

system of second-order ordinary differential equations in relation to the time variable [1]. Carlberg

et al presented a model-reduction strategy that retains the Lagrangian structure while enhancing

computational efficiency, particularly in scenarios with high-order nonlinearities and arbitrary

parameter dependencies. Their results, based on a parameterized truss structure problem, highlight

the practical significance of preserving the Lagrangian framework and demonstrate the advantages

of their approach, which reduces computation time while ensuring high accuracy and stability

compared to existing nonlinear model-reduction methods that do not maintain structural integrity

[2]. Berrut and Trefethen examined the mathematical characteristics of Lagrange interpolation and

advocated for barycentric Lagrange interpolation as a more advantageous technique. The authors

shed light on the computational efficiency of this method, making it a valuable asset for numerical

analysis [3]. The Lagrange representation of the interpolating polynomial can be reformulated into

two more computationally viable forms: a modified Lagrange form and a barycentric form. It is

demonstrated that the modified Lagrange formula is backward stable. Consequently, the barycentric

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

389

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

formula may exhibit significantly lower accuracy than the modified Lagrange formula, particularly

when poorly chosen interpolating points are utilized [4]. Luo transformed the traditional global

univariate Lagrange interpolation method into a local multivariate interpolation method. This newly

developed method is capable of interpolating irregularly distributed data points effectively [5]. The

performance of the local multivariate Lagrange interpolation method was assessed through its

application in function approximation. Boukhelkhal and Zeghdane proposed accurate computational

approaches based on the Lagrange basis and Jacobi-Gauss collocation methods to address a class of

nonlinear stochastic Itô-Volterra integral equations (SIVIEs) [6]. Liu et al reported a highly accurate

mesh-free method leveraging barycentric Lagrange basis functions to solve both linear and nonlinear

multi-dimensional Fredholm integral equations (FIEs) of the second kind. This method represents

an enhanced Lagrange interpolation technique that offers high precision alongside a cost-effective

procedure [7]. Pagani et al introduced an equivalent single-layer modeling approach for laminated

structures, allowing the user to preselect the number of layers consolidated into one. Lagrange points

are implemented to locate and potentially unify equivalent single-layer and layer-wise techniques

by enforcing displacement continuity in the thickness direction [8]. Ibrahim investigated Newton's

interpolation alongside Lagrange's interpolation polynomial method (LIPM). Their research

integrated both Newton’s interpolation and Lagrange methods (NIPM) for solving first-order

differential equations, resulting in minimal approximation errors [9]. Carrera et al explored the

geometrically nonlinear behavior arising from significant displacements and rotations in the cross-

sections of thin-walled composite beams subjected to axial loading. The study presents displacement

areas and stress distributions for composite structures with varying angles and functionally graded

(FG) structures, showcasing the accuracy and computational efficiency of the employed method,

which encourages further research [10]. Occorsio et al introduced a novel technique for image

resizing that employs Lagrange-Chebyshev interpolation, suitable for both upscaling and

downscaling processes. By utilizing a continuous scale combined with Chebyshev zeros on tensor

product grids, this method achieves optimal approximation. Performance evaluations using SSIM

and PSNR metrics illustrate that the approach yields results comparable to the traditional Bicubic

method during upscaling and significantly surpasses it and other recent techniques during

downscaling [11]. Sharma et al proposed a new variant of the Butterfly Optimization Algorithm

(BOA), referred to as mLBOA, to enhance its performance. The new algorithm incorporates a self-

adaptive parameter setting, the Lagrange interpolation formula, and a novel local search strategy

enhanced with Levy flight search, aimed at improving exploration and exploitation balance [12].

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

390

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

Boukhelkhal and Zeghdane recommended accurate computational methods based on Lagrange basis

and Jacobi-Gauss collocation methods to tackle a range of nonlinear stochastic Itô-Volterra integral

equations (SIVIEs). Utilizing Lagrange polynomials and the zeros of Jacobi polynomials, the

resultant system of linear and nonlinear stochastic Volterra integral equations is transformed into a

linear and nonlinear algebraic equations system [13]. Yuan et al thoroughly examined a high-

precision barycentric Lagrange interpolation collocation method for solving nonlinear wave

equations. Comparative experiments demonstrated that this method achieves superior computational

accuracy and convergence rates for nonlinear wave equations [14]. Zhao noted that the Lagrange

interpolation formula does not uniformly converge to any continuous function, raising the need for

advancements in its convergence characteristics. The research delves into the application of an

improved Lagrangian interpolation formula by Bohr, referencing relevant original documents [15].

Deng et al introduced a generalized fuzzy barycentric Lagrange interpolation method to resolve two-

dimensional fuzzy fractional Volterra integral equations. The convergence of this proposed method

is analyzed, and an error estimation is provided based on the uniform continuity modulus. Finally,

various numerical experiments demonstrate that the method possesses high numerical accuracy for

both smooth and non-smooth solutions [16].

2. Lagrange interpolation method

The Lagrange interpolation method is a mathematical technique used to find a polynomial that passes

through a given set of points. It is especially useful when you have discrete data points and want to

estimate values at other points or perform data fitting.

2.1 Lagrange Polynomial

 Given a set of 𝑛 + 1 data points (𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), where: 𝑥𝑖 are the distinct x-

coordinates of the points and 𝑦𝑖 are the corresponding y-coordinates (function values) at those x-

coordinates.

The Lagrange polynomial 𝑃(𝑥) that interpolates these points can be expressed as:

𝑃(𝑥) = ∑ 𝑦𝑖 𝐿𝑖(𝑥)
𝑛

𝑖=0

 where 𝐿𝑖(𝑥) are the Lagrange basis polynomials defined as:

𝐿𝑖(𝑥) = ∏
𝑥− 𝑥𝑗

 𝑥𝑖− 𝑥𝑗
0≤𝑗≤𝑛

𝑗≠𝑖

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

391

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

The term 𝐿𝑖(𝑥) is constructed such that 𝐿𝑖(𝑥𝑖) = 1 and 𝐿𝑖(𝑥𝑗) = 0 for 𝑗 ≠ 𝑖. This means that 𝐿𝑖(𝑥)

is a polynomial of degree 𝑛 which is equal to 1 at 𝑥𝑖 and equal to 0 at all other 𝑥𝑗. To compute a

Lagrange polynomial, we perform the following steps:

We Select the data points (𝑥𝑖, 𝑥𝑗) for 𝑖 = 0, 1, … , 𝑛. Then Compute each Lagrange basis polynomial

𝐿𝑖(𝑥) using the formula for 𝐿𝑖(𝑥). Finally, we sum the contributions 𝑦𝑖𝐿𝑖(𝑥) for each 𝑖 to obtain the

polynomial 𝑃(𝑥).

Example .1.

Let’s consider a concrete example with three points: (1, 1), (2, 4), (3, 9) corresponding to the

function. We want to find the polynomial that fits these points.

We have the Points: (𝑥0, 𝑦0) = (1, 1), (𝑥1, 𝑦1) = (2, 4), (𝑥2, 𝑦2) = (3, 9)

And then basis pPolynomials:

𝐿0(𝑥) = (
𝑥 − 2)(𝑥 − 3)

(1 − 2)(1 − 3)
=

(𝑥 − 2)(𝑥 − 3)

2

𝐿1(𝑥) = (
𝑥 − 1)(𝑥 − 3)

(2 − 1)(2 − 3)
= − (𝑥 − 1)(𝑥 − 3)

𝐿2(𝑥) = (
𝑥 − 1)(𝑥 − 2)

(3 − 1)(3 − 2)
=

(𝑥 − 1)(𝑥 − 2)

2

Then we have the following Polynomial:

𝑃(𝑥) = 𝐿0(𝑥) + 4𝐿1(𝑥) + 9𝐿2(𝑥)

 We substitute 𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥) into this equation and after simplification we get the following

final terms.

𝑃(𝑥) = 𝑥2 − 36

Lagrange interpolation is commonly used in numerical analysis, computer graphics, and data fitting.

It provides a straightforward way to approximate functions or interpolate data. The Lagrange

interpolation method is a valuable technique for constructing polynomials from discrete data points,

allowing for function approximation and interpolation in various applications. The Lagrange

interpolation method has the advantage of providing accurate boundaries that pass through all given

data points. It is easy to implement and understand, especially for a small amount of data.

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

392

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

The Lagrange interpolation formula can be adapted to multidimensional cases, such as for functions

that depend on more than one variable (like \(f(x, y) \)). While the univariate Lagrange interpolation

method focuses on interpolating functions of a single variable, the extension to multiple dimensions

typically employs a tensor product approach using the concept of multivariate Lagrange

interpolation.

2.2 Multidimensional Lagrange Interpolation

For a function 𝑓(𝑥, 𝑦) defined on a grid of points in a two-dimensional space, we can obtain a

polynomial 𝑃(𝑥, 𝑦) that interpolates the function values at these points. Here’s how the method is

adapted:

We show how to adapt the method, first the point grid: Suppose we have a set of known data points

given as (𝑥𝑖 , 𝑦𝑖, 𝑓(𝑥𝑖, 𝑦𝑖)) for 𝑖 = 0, 1, … , 𝑛 and 𝑗 = 0, 1, … , 𝑚. Second, we define the Lagrange

basis polynomials: Multivariate polynomials can be constructed using the following basis

polynomials for each dimension, similar to the way this is done in a single dimension.

For a fixed 𝑦, the univariate Lagrange polynomial in 𝑥 is:

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗

 𝑥𝑖 − 𝑥𝑗0≤𝑗≤𝑛
𝑗≠𝑖

For a fixed 𝑥, the univariate Lagrange polynomial in 𝑦 is:

𝑀𝑗(𝑦) = ∏
𝑦 − 𝑦𝑘

𝑦𝑗 − 𝑦𝑘0≤𝑘≤𝑚
𝑘≠𝑗

Now, we cCombine the basic polynomials in two dimensions, the multivariable Lagrangian

polynomial 𝑃(𝑥, 𝑦) can be defined as:

𝑃(𝑥, 𝑦) = ∑ ∑ 𝑓(𝑥𝑖 , 𝑦𝑖) 𝐿𝑖(𝑥) 𝑀𝑗(𝑦)
𝑚

𝑗=0

𝑛

𝑖=0

This double summation combines the contributions of each basis polynomial from both dimensions.

Each term 𝑓(𝑥𝑖, 𝑦𝑖) 𝐿𝑖(𝑥)𝑀𝑗(𝑦) accommodates the function values at the grid points determined by

(𝑥𝑖, 𝑦𝑖).

The method can be extended further to three or more dimensions. For instance, for a function

𝑓(𝑥, 𝑦, 𝑧) that depends on three variables, the polynomial is expressed as:

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

393

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

𝑃(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝑓(𝑥𝑖, 𝑦𝑖, 𝑧𝑘) 𝐿𝑖(𝑥) 𝑀𝑗(𝑦)𝑁𝑘(𝑧)
𝑝

𝑘=0

𝑚

𝑗=0

𝑛

𝑖=0

where 𝑁𝑘(𝑧) is the univariate Lagrange polynomial in the 𝑧 dimension.

Example .2. (Two-Dimensional Interpolation) :

Consider a set of points (𝑥𝑖, 𝑦𝑖) with respective function values:

(1, 1, 1), (1, 2, 2), (2, 1, 3), (2, 2, 4)

To interpolate this data. We compute Lagrange Basis Polynomials:

For 𝑥 values (e.g., 𝑥0 = 1, 𝑥1 = 2):

𝐿0(𝑥) =
(𝑥 − 2)

(1 − 2)
, 𝐿1(𝑥) =

(𝑥 − 1)

(2 − 1)

For 𝑦 values (e.g., 𝑦0 = 1, 𝑦1 = 2):):

𝑀0(𝑥) =
(𝑦 − 2)

(1 − 2)
, 𝑀1(𝑥) =

(𝑦 − 1)

(2 − 1)

Then, we construct the Polynomial as following:

𝑃(𝑥, 𝑦) = ∑ ∑ 𝑓(𝑥𝑖, 𝑦𝑖) 𝐿𝑖(𝑥)𝑀𝑗(𝑦)
1

𝑗=0

1

𝑖=0

 Finally, we substitute values into the equation to compute the polynomial at any point (𝑥, 𝑦).

Multidimensional interpolation can be applied to image processing where resampling of images can

involve 2D or bicubic interpolation. It can also be applied to geographic information systems (GIS)

and computational physics where simulations in multiple dimensions often require interpolating

fields on a grid. Multidimensional interpolation is a natural extension of the univariate case, allowing

the creation of multiple bounds that fit data in multiple variables. By using the product of the

multidimensional boundary tensor and combining contributions from distinct variable dimensions,

this method provides a structured and efficient way to perform interpolation in higher dimensional

spaces.

3. Error analysis in multidimensional interpolation

Error analysis in multidimensional interpolation is a crucial aspect of numerical analysis and

computational mathematics, as it helps to quantify how accurate the interpolation results are in

representing the underlying function from which sample data is drawn.

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

394

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

Given a function 𝑓 ∶ ℝ𝑛 → ℝ defined on a domain Ω ⊂ ℝ𝑛, we want to interpolate 𝑓 using known

values 𝑓(𝑥1), 𝑓(𝑥2), . . . , 𝑓(𝑥𝑚) at 𝑚 points in Ω.

3.1 Interpolation Error Definition

The error in interpolation is typically defined as the difference between the actual function value and

the interpolated value at a point 𝑋:

𝐸(𝑋) = 𝑓(𝑋) − 𝑃(𝑋)

where 𝑃(𝑋) is the interpolating polynomial or function.

3.2 Lagrange Interpolation Error

For Lagrange interpolation in n dimensions, the interpolation polynomial 𝑃𝑛(𝑥) can be expressed as:

𝑃𝑛(𝑋) = ∑ 𝑓(𝑋𝑖)
𝑛

𝑖=0
𝐿𝑖(𝑋)

The error can be expressed involving the derivatives of 𝑓:

𝐸(𝑋) = 𝑓(𝑋) − 𝑃𝑛(𝑋) =
𝑓(𝑛+1)(𝜂)

(𝑛 + 1)!
∏(𝑋 − 𝑋𝑖)

𝑛

𝑖=0

Here, 𝜂 is some point in the domain of interpolation, and 𝑓(𝑛+1)(𝜂) denotes the (𝑛 + 1)-th derivative

of 𝑓.

In multidimensional spaces, error analysis can become complex due to the interaction of multiple

dimensions. The overall error can be characterized by evaluating the maximum error among the

dimensions:

𝐸𝑚𝑎𝑥 = max
𝑋∈𝐷

|𝑓(𝑋) − 𝑃(𝑋)|

Analytical forms will differ based on the interpolation method used, but key considerations include:

The order of the polynomial used in interpolation, the behavior of derivatives of the function in

higher dimensions, and the distribution and density of data points.

Error analysis in multidimensional interpolation provides a framework to understand how closely an

interpolated function approximates the actual function.

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

395

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

4. Numerical examples

We provide a first example demonstrating the Lagrange interpolation method and how to find the

real and approximate solutions for a set of nonlinear equations.

Example .3.

Let's use a simple nonlinear function for demonstration

 𝑓(𝑥) = 𝑥2 − 2

which has the real solution 𝑥 = √2.

We'll generate sample points and perform interpolation. Then we'll compute the error between the

real solution and the interpolated solution.

Code Matlab for example .3.

function lagrange_interpolation()

 real_solution = sqrt(2);

 f = @(x) x.^2 - 2;

 x_points = [0, 1, 2];

 y_points = f(x_points);

 x_interpolate = linspace(0, 2, 100);

 y_interpolated = lagrange_interpolate(x_points, y_points, x_interpolate);

 approximate_solution = find_approximate_solution(x_points, y_points);

 error = abs(real_solution - approximate_solution);

 fprintf('Real solution: %.5f\n', real_solution);

 fprintf('Approximate solution: %.5f\n', approximate_solution);

 fprintf('Approximation error: %.5f\n', error);

plot_error_graph(x_interpolate, y_interpolated, f, real_solution, x_points, y_points);

end

function y = lagrange_interpolate(x_points, y_points, x)

 n = length(x_points);

 y = zeros(size(x));

 for k = 1:n

 L = ones(size(x));

 for j = [1:k-1, k+1:n]

 L = L .* (x - x_points(j)) / (x_points(k) - x_points(j));

 end

 y = y + y_points(k) * L;

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

396

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

 end

end

function approx = find_approximate_solution(x_points, y_points)

 approx = lagrange_interpolate(x_points, y_points, sqrt(2));

end

function plot_error_graph(x_interpolate, y_interpolated, f, real_solution, x_points, y_points)

 exact_values = f(x_interpolate);

 errors = abs(exact_values - y_interpolated);

 figure;

 subplot(2, 1, 1);

 plot(x_interpolate, errors, 'r-', 'LineWidth', 2);

 xlabel('x', 'FontSize', 12);

 ylabel('Error', 'FontSize', 12);

 title('Error of Lagrange Interpolation', 'FontSize', 14);

 grid on;

 subplot(2, 1, 2);

 plot(x_interpolate, exact_values, 'b-', 'LineWidth', 2); hold on;

 plot(x_interpolate, y_interpolated, 'g--', 'LineWidth', 2);

 plot(x_points, y_points, 'ro', 'MarkerFaceColor', 'r');

 plot(real_solution, real_solution^2 - 2, 'ko', 'MarkerFaceColor', 'k');

 xlabel('x', 'FontSize', 12);

 ylabel('Function value', 'FontSize', 12);

 title('Lagrange Interpolation vs Exact Function', 'FontSize', 14);

 legend('Exact function', 'Lagrange Interpolated', 'Sample points', 'Real solution', 'Location',

'Best');

 grid on;

end

The provided MATLAB code in example 3 implements Lagrange interpolation to approximate the

roots of a nonlinear function, specifically 𝑓(𝑥) = 𝑥2 − 2.

We generate sample points for interpolation: 𝑥 = [0, 1, 2], and calculate their corresponding

function values 𝑦. Then find the approximate value of the function at 𝑥 = √2 using Lagrange

interpolation. The error between the real solution and the approximate solution is calculated and

displayed. The top graph of Figure 1 displays the error in the Lagrange interpolation across the range

of 𝑥 values from 0 to 2. The y-axis represents the error magnitude, which is very small (on the order

of 10−16, indicating that the interpolation is highly accurate. The oscillations in the error graph

suggest that while the interpolation is generally accurate, there are small fluctuations in the error

values.

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

397

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

 While Bottom graph of Figure 1 compares the exact function 𝑓(𝑥) = 𝑥2 − 2 (shown in blue) with

the Lagrange interpolated values (shown in green dashed line). The red dots represent the sample

points used for interpolation, while the black dot indicates the real solution at 𝑥 = √2. The close

alignment of the green dashed line with the blue line indicates that the Lagrange interpolation closely

approximates the actual function across the range.

Figure 1: Error of Lagrange interpolation (top graph) and Lagrange interpolation vs exact function

(bottom graph) 𝑓(𝑥) = 𝑥2 − 2

Table 1: Lagrange interpolation results for example 3

Lagrange interpolation

Real solution 1.41421

Approximate solution 1.41421

Approximation error 0.00000

Example .4.

In the example we use the function:

𝑓(𝑥) = 𝑠𝑖𝑛(𝑥)

This function oscillates and has more intricate behavior, making it a good candidate for

demonstrating Lagrange interpolation.

We'll calculate an approximate value for 𝑓(𝜋/4), which is

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

398

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

𝑠𝑖𝑛(𝜋/4) =
√2

2
≈ 0.7071.

We write MATLAB code to utilize this new function and compute the approximate solution for 𝑥 =
𝜋

4
.

Code Matlab for example .4.

function lagrange_interpolation()

 real_solution = sin(pi/4);

 f = @(x) sin(x);

 x_points = [0, pi/6, pi/3, pi/2];

 y_points = f(x_points);

 x_interpolate = linspace(0, pi/2, 100);

 y_interpolated = lagrange_interpolate(x_points, y_points, x_interpolate);

 approximate_solution = lagrange_interpolate(x_points, y_points, pi/4);

 error = abs(real_solution - approximate_solution);

 fprintf('Real solution (sin(pi/4)): %.5f\n', real_solution);

 fprintf('Approximate solution: %.5f\n', approximate_solution);

 fprintf('Approximation error: %.5f\n', error);

 plot_error_graph(x_interpolate, y_interpolated, f, real_solution, approximate_solution, x_points,

y_points);

end

function y = lagrange_interpolate(x_points, y_points, x)

 n = length(x_points);

 y = zeros(size(x));

 for k = 1:n

 L = ones(size(x));

 for j = [1:k-1, k+1:n]

 L = L .* (x - x_points(j)) / (x_points(k) - x_points(j));

 end

 y = y + y_points(k) * L;

 end

end

function plot_error_graph(x_interpolate, y_interpolated, f, real_solution, approximate_solution,

x_points, y_points)

 exact_values = f(x_interpolate);

 errors = abs(exact_values - y_interpolated);

 figure;

 subplot(2, 1, 1);

 plot(x_interpolate, errors, 'r-', 'LineWidth', 2);

 xlabel('x', 'FontSize', 12);

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

399

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

 ylabel('Error', 'FontSize', 12);

 title('Error of Lagrange Interpolation', 'FontSize', 14);

 grid on;

 subplot(2, 1, 2);

 plot(x_interpolate, exact_values, 'b-', 'LineWidth', 2); hold on;

 plot(x_interpolate, y_interpolated, 'g--', 'LineWidth', 2);

 plot(x_points, y_points, 'ro', 'MarkerFaceColor', 'r');

 plot(pi/4, real_solution, 'ko', 'MarkerFaceColor', 'k');

 xlabel('x', 'FontSize', 12);

 ylabel('Function value', 'FontSize', 12);

 title('Lagrange Interpolation vs Exact Function', 'FontSize', 14);

 legend('Exact function', 'Lagrange Interpolated', 'Sample points', 'Real solution', 'Location',

'Best');

 grid on;

end

Points [0,
𝜋

6
,

𝜋

3
,

𝜋

2
] were chosen to better fit our interpolation for

𝜋

4
. The plot annotations for the real

and approximate solutions are adjusted to reflect the new function and point of interest (see Figure

2).

Table 2 explain the real solution for 𝑠𝑖𝑛(𝜋/4), the approximate solution using Lagrange

interpolation, and showing how well the interpolation fits the sine function, along with the associated

errors.

Figure 2: Error of Lagrange interpolation (top graph) and Lagrange interpolation vs exact function

(bottom graph) for 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥)

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

400

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

Table 2: Lagrange interpolation results for example 4

Lagrange interpolation

Real solution 0.70711

Approximate solution 0.70589

Approximation error 0.00122

Example .5.

Let the function be:

𝑢(𝑥) = 6𝑥 − 𝑥3 + 0.5 ∫ (6𝑡 − 𝑡3) 𝑑𝑡
𝑥2

0

Code Matlab for Eexample .5.

function lagrange_interpolation()

 real_solution = u(sqrt(2));

 x_points = [0, 1, 2];

 y_points = u(x_points);

 x_interpolate = linspace(0, 2, 100);

 y_interpolated = lagrange_interpolate(x_points, y_points, x_interpolate);

 approximate_solution = find_approximate_solution(x_points, y_points);

 error = abs(real_solution - approximate_solution);

 fprintf('Real solution: %.5f\n', real_solution);

 fprintf('Approximate solution: %.5f\n', approximate_solution);

 fprintf('Estimation error: %.5f\n', error);

 plot_results(x_interpolate, y_interpolated, real_solution, x_points, y_points);

end

function y = lagrange_interpolate(x_points, y_points, x)

 n = length(x_points);

 y = zeros(size(x));

 for k = 1:n

 L = ones(size(x));

 for j = [1:k-1, k+1:n]

 L = L .* (x - x_points(j)) / (x_points(k) - x_points(j));

 end

 y = y + y_points(k) * L;

 end

end

function approx = find_approximate_solution(x_points, y_points)

 approx = lagrange_interpolate(x_points, y_points, sqrt(2));

end

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

401

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

function u_value = u(x)

 u_value = zeros(size(x));

 for i = 1:length(x)

 t_squared = x(i).^2;

 u_value(i) = 6*x(i) - x(i)^3 + 0.5 * integral(@(t) u_func(t), 0, t_squared);

 end

end

function val = u_func(t)

 val = 6*t - t.^3;

end

function plot_results(x_interpolate, y_interpolated, real_solution, x_points, y_points)

 exact_values = u(x_interpolate);

 errors = abs(exact_values - y_interpolated);

 figure;

 plot(x_interpolate, exact_values, 'b-', 'LineWidth', 2); hold on;

 plot(x_interpolate, y_interpolated, 'g--', 'LineWidth', 2);

 plot(x_points, y_points, 'ro', 'MarkerFaceColor', 'r');

 xlabel('x', 'FontSize', 12);

 ylabel('Function Value', 'FontSize', 12);

 title('Lagrange Interpolation vs Exact Function', 'FontSize', 14);

 legend('Exact Function', 'Lagrange Interpolated', 'Sample Points', 'Location', 'Best');

 grid on;

 figure;

 plot(x_interpolate, errors, 'm-', 'LineWidth', 2);

 xlabel('x', 'FontSize', 12);

 ylabel('Error', 'FontSize', 12);

 title('Interpolation Error', 'FontSize', 14);

 grid on;

end

Figure 3 shows how the interpolation error varies across the defined range. The peak error signifies

a point where the interpolation fails to accurately follow the original function. This graph illustrates

the difference between the original function (blue line) and the interpolated function using Lagrange

(dashed line). It shows that the interpolation may fit well at certain sample points (red dots) but

diverges in other areas. These results in Table 3 indicate that the choice of sample points and their

impact on the accuracy of interpolation plays a crucial role. It is essential to evaluate how well the

interpolation aligns with the original function across specific ranges to ensure accurate estimations.

In this case, the approximate solution is far from the true value, highlighting the need to improve

point selection.

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

402

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

Figure 3: Error of Lagrange interpolation (top graph) and Lagrange interpolation vs exact function

(bottom graph) for function in example 5

Table 3: Lagrange interpolation results for example 5

Lagrange interpolation

Real solution 9.65685

Approximate solution 4.10965

Estimation error 5.54720

Example 6.

Let the function

𝑓(𝑥) = 𝑥2 +
1

21
𝑥4 + ∫ (𝑡 − 𝑥) 𝑑𝑡

𝑥

0

and we perform Lagrange interpolation.

Code Matlab for example .6.

function lagrange_interpolation()

 f = @(x) x.^2 + (1/21) * x.^4 + arrayfun(@(x) integral(@(t) (t - x) .* ones(size(t)), 0, x), x);

 real_solution = f(sqrt(2));

 x_points = [0, 1, 2];

 y_points = f(x_points);

 x_interpolate = linspace(0, 2, 100);

 y_interpolated = lagrange_interpolate(x_points, y_points, x_interpolate);

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

403

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

 approximate_solution = find_approximate_solution(x_points, y_points);

 error = abs(real_solution - approximate_solution);

 fprintf('Real solution: %.5f\n', real_solution);

 fprintf('Approximate solution: %.5f\n', approximate_solution);

 fprintf('Approximation error: %.5f\n', error);

 plot_error_graph(x_interpolate, y_interpolated, f, real_solution, x_points, y_points);

end

function y = lagrange_interpolate(x_points, y_points, x)

 n = length(x_points);

 y = zeros(size(x));

 for k = 1:n

 L = ones(size(x));

 for j = [1:k-1, k+1:n]

 L = L .* (x - x_points(j)) / (x_points(k) - x_points(j));

 end

 y = y + y_points(k) * L;

 end

end

function approx = find_approximate_solution(x_points, y_points)

 approx = lagrange_interpolate(x_points, y_points, sqrt(2));

end

function plot_error_graph(x_interpolate, y_interpolated, f, real_solution, x_points, y_points)

 exact_values = f(x_interpolate);

 errors = abs(exact_values - y_interpolated);

 figure;

 subplot(2, 1, 1);

 plot(x_interpolate, errors, 'r-', 'LineWidth', 2);

 xlabel('x', 'FontSize', 12);

 ylabel('Error', 'FontSize', 12);

 title('Error of Lagrange Interpolation', 'FontSize', 14);

 grid on;

 subplot(2, 1, 2);

 plot(x_interpolate, exact_values, 'b-', 'LineWidth', 2); hold on;

 plot(x_interpolate, y_interpolated, 'g--', 'LineWidth', 2);

 plot(x_points, y_points, 'ro', 'MarkerFaceColor', 'r');

 plot(sqrt(2), real_solution, 'ko', 'MarkerFaceColor', 'k');

 xlabel('x', 'FontSize', 12);

 ylabel('Function value', 'FontSize', 12);

 title('Lagrange Interpolation vs Exact Function', 'FontSize', 14);

 legend('Exact function', 'Lagrange Interpolated', 'Sample points', 'Real solution', 'Location',

'Best');

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

404

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

 grid on;

end

The Lagrange interpolation results in Table 4 indicate that the approximate solution 1.26261 is

relatively close to the real solution 1.19048. The approximation error of 0.07213 signifies a small

deviation, suggesting that the interpolation method performed quite well in this case. The Figure 4

shows the error across the range, indicating that the error fluctuates but remains relatively small,

peaking around \(0.05\). The interpolation closely follows the exact function, demonstrating good

accuracy in this example. The Lagrange interpolation method yielded a satisfactory approximation

in this case, with a minor error, indicating that the interpolation closely represents the original

function over the chosen range.

Figure 4: Error of Lagrange interpolation (top graph) and Lagrange interpolation vs exact function

(bottom graph) for function in example 6

Table 4: Lagrange interpolation results for example 6

Lagrange interpolation

Real solution 1.19048

Approximate solution 1.26261

Approximation error 0.07213

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

405

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

Example 7.

Let the function

𝑓(𝑥, 𝑦) = √(𝑥2 + 𝑦2) + 𝑒𝑥𝑝(𝑥 + 𝑦)

and we perform Lagrange interpolation.

Code Matlab for example 7.

function nonlinear_interpolation()

 f = @(x, y) sqrt(x.^2 + y.^2) + exp(x + y);

 x_points = linspace(-2, 2, 5);

 y_points = linspace(-2, 2, 5);

 [X, Y] = meshgrid(x_points, y_points);

 Z_exact = f(X, Y);

 x_interpolate = linspace(-2, 2, 100);

 y_interpolate = linspace(-2, 2, 100);

 [X_interp, Y_interp] = meshgrid(x_interpolate, y_interpolate);

 Z_approx = lagrange_interpolate(x_points, y_points, f, X_interp, Y_interp);

 Z_exact_interp = f(X_interp, Y_interp);

 absolute_error = abs(Z_exact_interp - Z_approx);

 figure;

 subplot(1, 2, 1);

 surf(X_interp, Y_interp, Z_exact_interp, 'FaceAlpha', 0.5);

 hold on;

 surf(X_interp, Y_interp, Z_approx, 'FaceAlpha', 0.5);

 title('Exact and Approximated Solutions');

 xlabel('X-axis');

 ylabel('Y-axis');

 zlabel('Z-axis');

 legend('Exact Solution', 'Approximated Solution');

 grid on;

 subplot(1, 2, 2);

 surf(X_interp, Y_interp, absolute_error);

 title('Absolute Error of Approximations');

 xlabel('X-axis');

 ylabel('Y-axis');

 zlabel('Absolute Error');

 colorbar;

 grid on;

 fprintf('Numerical Values of Absolute Errors:\n');

 disp(absolute_error);

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

406

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

 fprintf('Note: It is important to consider the numerical values or use the absolute error graph to

assess the accuracy of the approximation compared to the exact solution.\n');

end

function Z = lagrange_interpolate(x_points, y_points, f, X, Y)

 Z = zeros(size(X));

 m = length(x_points);

 n = length(y_points);

 for i = 1:m

 for j = 1:n

 Lx = 1;

 Ly = 1;

 for k = 1:m

 if k ~= i

 Lx = Lx .* (X - x_points(k)) / (x_points(i) - x_points(k));

 end

 end

 for l = 1:n

 if l ~= j

 Ly = Ly .* (Y - y_points(l)) / (y_points(j) - y_points(l));

 end

 end

 Z = Z + f(x_points(i), y_points(j)) * Lx .* Ly;

 end

 end

end

In Figure 5, the exact solution in blue and the approximate solution in orange (left figure), allowing

for comparison of the two figures. The absolute error between the two solutions is shown (right

figure), which helps in assessing the accuracy of the interpolation.

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

407

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

Figure 5: The exact solution (in blue) and the approximate solution (in orange) in the left figure, and

the absolute error between the two solutions (right figure) for example 7

Example 8

We repeat the previous example and calculate the exact solution and approximate solutions using

different numbers of points [1, 5, 10, 20].

𝑓(𝑥, 𝑦) = √(𝑥2 + 𝑦2) + 𝑒𝑥𝑝(𝑥 + 𝑦)

Code Matlab for example 8

function nonlinear_interpolation_multiple_iterations_combined()

 f = @(x, y) sqrt(x.^2 + y.^2) + exp(x + y);

 iterations = [1, 5, 10, 20];

 x_interpolate = linspace(-2, 2, 500);

 y_interpolate = linspace(-2, 2, 500);

 [X_exact, Y_exact] = meshgrid(x_interpolate, y_interpolate);

 Z_exact = f(X_exact, Y_exact);

 absolute_errors = zeros(size(iterations));

 figure;

 for k = 1:length(iterations)

 num_points = iterations(k);

 x_points = linspace(-2, 2, num_points);

 y_points = linspace(-2, 2, num_points);

 Z_approx = lagrange_interpolate(x_points, y_points, f, X_exact, Y_exact);

 absolute_error = abs(Z_exact - Z_approx);

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

408

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

 max_absolute_error = max(absolute_error(:));

 absolute_errors(k) = max_absolute_error;

 subplot(2, length(iterations), k);

 surf(X_exact, Y_exact, Z_exact, 'FaceAlpha', 0.5, 'EdgeColor', 'none');

 title('Exact Solution');

 xlabel('X-axis');

 ylabel('Y-axis');

 zlabel('Z-axis');

 grid on;

 view(3);

 subplot(2, length(iterations), k + length(iterations));

 surf(X_exact, Y_exact, Z_approx, 'FaceAlpha', 0.3, 'EdgeColor', 'none');

 title(['Approximation with ', num2str(num_points), ' Points']);

 xlabel('X-axis');

 ylabel('Y-axis');

 zlabel('Z-axis');

 grid on;

 view(3);

 end

 disp('Maximum Absolute Errors for each iteration:');

 disp(array2table(absolute_errors', 'VariableNames', {'MaximumAbsoluteError'}, 'RowNames',

cellstr(num2str(iterations'))));

end

function Z = lagrange_interpolate(x_points, y_points, f, X, Y)

 Z = zeros(size(X));

 m = length(x_points);

 n = length(y_points);

 for i = 1:m

 for j = 1:n

 Lx = 1;

 Ly = 1;

 for k = 1:m

 if k ~= i

 Lx = Lx .* (X - x_points(k)) / (x_points(i) - x_points(k));

 end

 end

 for l = 1:n

 if l ~= j

 Ly = Ly .* (Y - y_points(l)) / (y_points(j) - y_points(l));

 end

 end

 Z = Z + f(x_points(i), y_points(j)) * Lx .* Ly;

 end

 end

end

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

409

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

The resulting plot shows the exact solution and approximate solutions using different numbers of

points (see Figure 6). Exact Solution shown in the top row of the plot. It represents the exact surface

of the given function, which appears smooth and curved. The peak in the middle indicates the highest

values of the function, while the lowest values appear at the ends. Approximate solutions shown in

the bottom row. Each plot is an approximation using a different number of points (1, 5, 10, 20). As

the number of points increases, the approximate solutions get closer to the exact solution. When

using a single point, the surface appears very flat, which means that the approximation is inaccurate.

As the number of points increases, the surface becomes more complex and approaches the exact

shape. Table 5 shows the maximum absolute errors for the iterations (1, 5, 10, 20).

Figure 6: The exact solution and approximate solutions using different numbers of points for

example 8

Table 5: Maximum Absolute Errors for each iteration

Iteration Maximum Absolute Errors

1 56.474

5 0.41982

10 0.18032

20 0.10601

http://creativecommons.org/licenses/by-nc/4.0/

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

410

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

5. Computational results

Developing the Lagrange interpolation methodology and its analysis can enhance its accuracy,

efficiency, and flexibility in solving multidimensional nonlinear equations. This can open new

horizons for more complex and innovative applications in various fields. The Lagrange interpolation

method may be more accurate in estimating values at unknown points. A good analysis can lead to

the detection of errors and dimensions that can be improved. As the algorithm is improved, it is

possible to reduce the number of points required to achieve a given level of accuracy. This can reduce

computational complexity. Developing an analytical study of the algorithm can help to obtain

accurate estimates of errors, allowing us to understand how and to what extent nonlinear

complexities affect the results. Increasing the flexibility of the algorithm in dealing with certain

constraints or nonlinear functions can open the way to solve a wider range of nonlinear equations.

6. Discussion and conclusion

The current study provides a comprehensive analysis of the Lagrange method and its improvements.

The results confirm that improving the code using techniques such as analysis and the Howern

method leads to increased efficiency and reduced time required to calculate the interpolated values.

The use of the Lagrange method can be expanded to include new types of mathematical models,

such as those used in data science and network analysis. It is useful to combine the Lagrange method

with artificial intelligence and machine learning techniques to enhance modeling and prediction

capabilities. Further studies should be conducted to analyze typical errors and how to improve the

method to address problems related to numerical analysis.

References

[1] R. Jiwari, Lagrange interpolation and modified cubic B-spline differential quadrature methods

for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary

conditions, Computer Physics Communications, 193(2015)55-65,

https://doi.org/10.1016/j.cpc.2015.03.021

[2] K. Carlberg, R. Tuminaro, P. Boggs, Preserving Lagrangian structure in nonlinear model

reduction with application to structural dynamics, SIAM J. Sci Com., 37(2015) B153-B184,

https://doi.org/10.1137/140959602

[3] J. P. Berrut, L. N. Trefethen, Barycentric lagrange interpolation, SIAM review, 46(2004) 501-

517, https://doi.org/10.1137/S0036144502417715

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1016/j.cpc.2015.03.021
https://doi.org/10.1137/140959602
https://doi.org/10.1137/S0036144502417715

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

411

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

[4] N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IM. J.

NA., 24(2004)547-556, https://doi.org/10.1093/imanum/24.4.547

[5] Y. Luo, A local multivariate Lagrange interpolation method for constructing shape functions, Int.

J. biom eng., 26(2010)252-261, https://doi.org/10.1002/cnm.1149

[6] I. Boukhelkhal, R. Zeghdane, Lagrange interpolation polynomials for solving nonlinear

stochastic integral equations, Num Algo, 96(2024)583-618, https://doi.org/10.1007/s11075-

023-01713-8

[7] H. Liu, J. Huang, W. Zhang, Y Ma, Meshfree approach for solving multi-dimensional systems

of Fredholm integral equations via barycentric Lagrange interpolation, App. Math.

Com, 346(2019)295-304, https://doi.org/10.1016/j.amc.2018.10.024

[8] A. Pagani, E. Carrera, R. Augello, D. Scano, Use of Lagrange polynomials to build refined

theories for laminated beams, plates and shells, Com. Str, 276(2021)114505,

https://doi.org/10.1016/j.compstruct.2021.114505

[9] S. Ibrahim, Application of Lagrange Interpolation Method to Solve First-Order Differential

Equation Using Newton Interpolation Approach, Eur. J. Sci. Eng., 9(2023) 89-98,

https://doi.org/10.23918/eajse.v9i1p89 توحيد كتابة العنوان

[10] E. Carrera, M. D. Demirbas, R. Augello, Evaluation of stress distribution of isotropic,

composite, and FG beams with different geometries in nonlinear regime via Carrera-Unified

Formulation and Lagrange polynomial expansions, App. Sci, 11 (2021)10627,

https://doi.org/10.3390/app112210627

[11] D. Occorsio, G. Ramella, W. Themistoclakis, Lagrange–Chebyshev Interpolation for image

resizing, Math. Com. Sim, 197(2022)105-126, https://doi.org/10.1016/j.matcom.2022.01.017

[12] S. Sharma, S. Chakraborty, A. K. Saha, S. Nama, S. K. Sahoo, mLBOA: A modified butterfly

optimization algorithm with lagrange interpolation for global optimization, J. Bio. Eng., 19

(2022) 1161-1176, https://doi.org/10.1007/s42235-022-00175-3

[13] I. Boukhelkhal, R. Zeghdane, Lagrange interpolation polynomials for solving nonlinear

stochastic integral equations, Num. Algo, 96(2024)583-618, https://doi.org/10.1007/s11075-

023-01713-8

[14] H. Yuan, X. Wang, J. Li, Solving Nonlinear Wave Equations Based on Barycentric Lagrange

Interpolation, J. Nonl. Math. Phy., 31 (2024)41, https://doi.org/10.1007/s44198-024-00200-5

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/imanum/24.4.547
https://doi.org/10.1002/cnm.1149
https://doi.org/10.1007/s11075-023-01713-8
https://doi.org/10.1007/s11075-023-01713-8
https://doi.org/10.1016/j.amc.2018.10.024
https://doi.org/10.1016/j.compstruct.2021.114505
https://doi.org/10.23918/eajse.v9i1p89
https://doi.org/10.3390/app112210627
https://doi.org/10.1016/j.matcom.2022.01.017
https://doi.org/10.1007/s11075-023-01713-8
https://doi.org/10.1007/s11075-023-01713-8

412-387)4) (2023(2Bas J Sci 4 . A A H Alebadi

412

 This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license)

).nc/4.0/-http://creativecommons.org/licenses/by(

[15] N. Zhao, Study on the Application of Borel's Improved Lagrange Interpolation Formula, Int. J.

Edu. Hum., 9 (2023) 21-23, https://doi.org/10.54097/ijeh.v9i1.9030

[16] T. Deng, J. Huang, Y. Wang, H. Li, A generalized fuzzy barycentric Lagrange interpolation

method for solving two-dimensional fuzzy fractional Volterra integral equations, Num. Algo,

(2024)1-24, https://doi.org/10.1007/s11075-024-01814-y

لاغرانج لحل المعادلات غير الخطية متعددة الأبعاد التعديل الداخلي()استيفاءتطوير وتحليل طريقة

 المستخلص

لاغرانج وتحليلها يمكن أن يعزز من دقتها وكفاءتها ومرونتها في حل المعادلات غير الخطية متعددة لاستيفاءإن تطوير منهجية ا

لاغرانج كوسيلة فعالة لحل المعادلات غير الخطية متعددة الأبعاد. تعتمد هذه الاستيفاءتطوير وتحليل طريقة المقالةالأبعاد. تناقش

دقيقة وسريعة للمشكلات الرياضية المعقدة. تم تحسين كود تابعالطريقة على تقدير القيم ال ة من نقاط معروفة، مما يوفر حلولاً

 لاغرانج لتحقيق أداء أعلى وكفاءة أكبر من خلال تقنيات مثل استخدام قاعدة بيانات الحدود. الاستيفاء

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.54097/ijeh.v9i1.9030

