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The development of the Lagrange interpolation methodology and its 

analysis can enhance its accuracy, efficiency, and flexibility in solving 

multidimensional nonlinear equations. The article discusses the 

development and analysis of the Lagrange interpolation method as an 

effective means of solving multidimensional nonlinear equations. This 

method is based on estimating the functional values from known 

points, which provides accurate and fast solutions to complex 

mathematical problems. The Lagrange interpolation code has been 

improved for higher performance and greater efficiency through 

techniques such as the use of the polynomial database. 
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1. Introduction  

     Interpolation methods are one of the basic mathematical tools in numerical analysis, as they are 

used to calculate unknown values from a set of known points. One of the most common of these 

methods is the Lagrange interpolation method, which allows estimating a function based on its 

values at specific points. This method can be used in a wide range of applications, including 

multidimensional nonlinear systems that are difficult to solve using traditional methods. Several 

studies have demonstrated the benefits of using the Lagrange method in solving mathematical 

equations. The effectiveness of the interpolation method in improving the accuracy of environmental 

models was analyzed by using different measurement points. The results showed that the method 

performs well with discrete data, which led to improved model predictions. The method relies on 

polynomial functions to create an accurate representation of the underlying data, making it 

invaluable in modeling and prediction scenarios. Given the significance of Lagrange interpolation, 

numerous studies have emerged to explore its applications, improvements, and theoretical 

foundations. Below is a summary of key research contributions that demonstrate the breadth and 

depth of this mathematical technique. Jiwari introduced two differential quadrature methods aimed 

at approximating solutions for one- and two-dimensional hyperbolic partial differential equations 

under Dirichlet and Neumann boundary conditions. These methods utilize Lagrange interpolation 

and modified cubic B-splines, respectively, effectively transforming the hyperbolic problem into a 

system of second-order ordinary differential equations in relation to the time variable [1]. Carlberg 

et al presented a model-reduction strategy that retains the Lagrangian structure while enhancing 

computational efficiency, particularly in scenarios with high-order nonlinearities and arbitrary 

parameter dependencies. Their results, based on a parameterized truss structure problem, highlight 

the practical significance of preserving the Lagrangian framework and demonstrate the advantages 

of their approach, which reduces computation time while ensuring high accuracy and stability 

compared to existing nonlinear model-reduction methods that do not maintain structural integrity 

[2]. Berrut and Trefethen examined the mathematical characteristics of Lagrange interpolation and 

advocated for barycentric Lagrange interpolation as a more advantageous technique. The authors 

shed light on the computational efficiency of this method, making it a valuable asset for numerical 

analysis [3]. The Lagrange representation of the interpolating polynomial can be reformulated into 

two more computationally viable forms: a modified Lagrange form and a barycentric form. It is 

demonstrated that the modified Lagrange formula is backward stable. Consequently, the barycentric 
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formula may exhibit significantly lower accuracy than the modified Lagrange formula, particularly 

when poorly chosen interpolating points are utilized [4]. Luo transformed the traditional global 

univariate Lagrange interpolation method into a local multivariate interpolation method. This newly 

developed method is capable of interpolating irregularly distributed data points effectively [5]. The 

performance of the local multivariate Lagrange interpolation method was assessed through its 

application in function approximation. Boukhelkhal and Zeghdane proposed accurate computational 

approaches based on the Lagrange basis and Jacobi-Gauss collocation methods to address a class of 

nonlinear stochastic Itô-Volterra integral equations (SIVIEs) [6]. Liu et al reported a highly accurate 

mesh-free method leveraging barycentric Lagrange basis functions to solve both linear and nonlinear 

multi-dimensional Fredholm integral equations (FIEs) of the second kind. This method represents 

an enhanced Lagrange interpolation technique that offers high precision alongside a cost-effective 

procedure [7]. Pagani et al introduced an equivalent single-layer modeling approach for laminated 

structures, allowing the user to preselect the number of layers consolidated into one. Lagrange points 

are implemented to locate and potentially unify equivalent single-layer and layer-wise techniques 

by enforcing displacement continuity in the thickness direction [8]. Ibrahim investigated Newton's 

interpolation alongside Lagrange's interpolation polynomial method (LIPM). Their research 

integrated both Newton’s interpolation and Lagrange methods (NIPM) for solving first-order 

differential equations, resulting in minimal approximation errors [9]. Carrera et al explored the 

geometrically nonlinear behavior arising from significant displacements and rotations in the cross-

sections of thin-walled composite beams subjected to axial loading. The study presents displacement 

areas and stress distributions for composite structures with varying angles and functionally graded 

(FG) structures, showcasing the accuracy and computational efficiency of the employed method, 

which encourages further research [10]. Occorsio et al introduced a novel technique for image 

resizing that employs Lagrange-Chebyshev interpolation, suitable for both upscaling and 

downscaling processes. By utilizing a continuous scale combined with Chebyshev zeros on tensor 

product grids, this method achieves optimal approximation. Performance evaluations using SSIM 

and PSNR metrics illustrate that the approach yields results comparable to the traditional Bicubic 

method during upscaling and significantly surpasses it and other recent techniques during 

downscaling [11]. Sharma et al proposed a new variant of the Butterfly Optimization Algorithm 

(BOA), referred to as mLBOA, to enhance its performance. The new algorithm incorporates a self-

adaptive parameter setting, the Lagrange interpolation formula, and a novel local search strategy 

enhanced with Levy flight search, aimed at improving exploration and exploitation balance [12]. 
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Boukhelkhal and Zeghdane recommended accurate computational methods based on Lagrange basis 

and Jacobi-Gauss collocation methods to tackle a range of nonlinear stochastic Itô-Volterra integral 

equations (SIVIEs). Utilizing Lagrange polynomials and the zeros of Jacobi polynomials, the 

resultant system of linear and nonlinear stochastic Volterra integral equations is transformed into a 

linear and nonlinear algebraic equations system [13]. Yuan et al thoroughly examined a high-

precision barycentric Lagrange interpolation collocation method for solving nonlinear wave 

equations. Comparative experiments demonstrated that this method achieves superior computational 

accuracy and convergence rates for nonlinear wave equations [14]. Zhao noted that the Lagrange 

interpolation formula does not uniformly converge to any continuous function, raising the need for 

advancements in its convergence characteristics. The research delves into the application of an 

improved Lagrangian interpolation formula by Bohr, referencing relevant original documents [15]. 

Deng et al introduced a generalized fuzzy barycentric Lagrange interpolation method to resolve two-

dimensional fuzzy fractional Volterra integral equations. The convergence of this proposed method 

is analyzed, and an error estimation is provided based on the uniform continuity modulus. Finally, 

various numerical experiments demonstrate that the method possesses high numerical accuracy for 

both smooth and non-smooth solutions [16]. 

2. Lagrange interpolation method 

The Lagrange interpolation method is a mathematical technique used to find a polynomial that passes 

through a given set of points. It is especially useful when you have discrete data points and want to 

estimate values at other points or perform data fitting. 

2.1 Lagrange Polynomial 

   Given a set of  𝑛 + 1 data points (𝑥0,  𝑦0), (𝑥1,  𝑦1), . . . , (𝑥𝑛,  𝑦𝑛), where: 𝑥𝑖 are the distinct x-

coordinates of the points and 𝑦𝑖 are the corresponding y-coordinates (function values) at those x-

coordinates. 

The Lagrange polynomial 𝑃(𝑥) that interpolates these points can be expressed as: 

𝑃(𝑥) = ∑  𝑦𝑖 𝐿𝑖(𝑥)
𝑛

𝑖=0
  

 where 𝐿𝑖(𝑥) are the Lagrange basis polynomials defined as: 

𝐿𝑖(𝑥) =  ∏
𝑥− 𝑥𝑗

 𝑥𝑖− 𝑥𝑗
0≤𝑗≤𝑛

𝑗≠𝑖
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The term 𝐿𝑖(𝑥) is constructed such that 𝐿𝑖( 𝑥𝑖) = 1 and 𝐿𝑖(𝑥𝑗) = 0 for 𝑗 ≠ 𝑖. This means that 𝐿𝑖(𝑥) 

is a polynomial of degree 𝑛 which is equal to 1 at  𝑥𝑖 and equal to 0 at all other 𝑥𝑗. To compute a 

Lagrange polynomial, we perform the following steps: 

We  Select the data points (𝑥𝑖, 𝑥𝑗) for 𝑖 =  0, 1, … , 𝑛. Then  Compute each Lagrange basis polynomial 

𝐿𝑖(𝑥) using the formula for 𝐿𝑖(𝑥). Finally, we sum the contributions  𝑦𝑖𝐿𝑖(𝑥) for each 𝑖 to obtain the 

polynomial 𝑃(𝑥). 

Example .1. 

Let’s consider a concrete example with three points: (1, 1), (2, 4), (3, 9) corresponding to the 

function. We want to find the polynomial that fits these points. 

We have the Points: (𝑥0,  𝑦0) = (1, 1), (𝑥1,  𝑦1) = (2, 4), (𝑥2,  𝑦2) = (3, 9)  

And then basis pPolynomials: 

𝐿0(𝑥) = (
𝑥 − 2)(𝑥 − 3)

(1 − 2)(1 − 3)
=

(𝑥 − 2)(𝑥 − 3)

2
 

   

𝐿1(𝑥) = (
𝑥 − 1)(𝑥 − 3)

(2 − 1)(2 − 3)
= − (𝑥 − 1)(𝑥 − 3) 

  

𝐿2(𝑥) = (
𝑥 − 1)(𝑥 − 2)

(3 − 1)(3 − 2)
=

(𝑥 − 1)(𝑥 − 2)

2
 

Then we have the following Polynomial: 

𝑃(𝑥) = 𝐿0(𝑥) + 4𝐿1(𝑥) + 9𝐿2(𝑥) 

   We substitute 𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥) into this equation and after simplification we get the following 

final terms.  

𝑃(𝑥) = 𝑥2 − 36 

Lagrange interpolation is commonly used in numerical analysis, computer graphics, and data fitting. 

It provides a straightforward way to approximate functions or interpolate data. The Lagrange 

interpolation method is a valuable technique for constructing polynomials from discrete data points, 

allowing for function approximation and interpolation in various applications. The Lagrange 

interpolation method has the advantage of providing accurate boundaries that pass through all given 

data points. It is easy to implement and understand, especially for a small amount of data. 
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The Lagrange interpolation formula can be adapted to multidimensional cases, such as for functions 

that depend on more than one variable (like \( f(x, y) \)). While the univariate Lagrange interpolation 

method focuses on interpolating functions of a single variable, the extension to multiple dimensions 

typically employs a tensor product approach using the concept of multivariate Lagrange 

interpolation. 

2.2 Multidimensional Lagrange Interpolation 

For a function 𝑓(𝑥, 𝑦) defined on a grid of points in a two-dimensional space, we can obtain a 

polynomial 𝑃(𝑥, 𝑦) that interpolates the function values at these points. Here’s how the method is 

adapted: 

We show how to adapt the method, first the point grid: Suppose we have a set of known data points 

given as (𝑥𝑖 ,  𝑦𝑖, 𝑓(𝑥𝑖,  𝑦𝑖))  for 𝑖 =  0, 1, … , 𝑛 and 𝑗 =  0, 1, … , 𝑚. Second, we define the Lagrange 

basis polynomials: Multivariate polynomials can be constructed using the following basis 

polynomials for each dimension, similar to the way this is done in a single dimension. 

For a fixed 𝑦, the univariate Lagrange polynomial in 𝑥 is: 

𝐿𝑖(𝑥) =  ∏
𝑥 − 𝑥𝑗

 𝑥𝑖 − 𝑥𝑗0≤𝑗≤𝑛
𝑗≠𝑖

 

For a fixed 𝑥, the univariate Lagrange polynomial in 𝑦 is: 

𝑀𝑗(𝑦) =  ∏
𝑦 − 𝑦𝑘

𝑦𝑗 − 𝑦𝑘0≤𝑘≤𝑚
𝑘≠𝑗

 

Now, we cCombine the basic polynomials in two dimensions, the multivariable Lagrangian 

polynomial 𝑃(𝑥, 𝑦) can be defined as: 

𝑃(𝑥, 𝑦) = ∑ ∑ 𝑓(𝑥𝑖 ,  𝑦𝑖) 𝐿𝑖(𝑥) 𝑀𝑗(𝑦)
𝑚

𝑗=0

𝑛

𝑖=0
 

This double summation combines the contributions of each basis polynomial from both dimensions. 

Each term 𝑓(𝑥𝑖,  𝑦𝑖) 𝐿𝑖(𝑥)𝑀𝑗(𝑦) accommodates the function values at the grid points determined by 

(𝑥𝑖,  𝑦𝑖). 

The method can be extended further to three or more dimensions. For instance, for a function 

𝑓(𝑥, 𝑦, 𝑧) that depends on three variables, the polynomial is expressed as: 
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𝑃(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝑓(𝑥𝑖,  𝑦𝑖, 𝑧𝑘) 𝐿𝑖(𝑥) 𝑀𝑗(𝑦)𝑁𝑘(𝑧)
𝑝

𝑘=0

𝑚

𝑗=0

𝑛

𝑖=0
 

where 𝑁𝑘(𝑧) is the univariate Lagrange polynomial in the 𝑧 dimension. 

Example .2. (Two-Dimensional Interpolation) : 

Consider a set of points (𝑥𝑖,  𝑦𝑖) with respective function values:  

(1, 1, 1), (1, 2, 2), (2, 1, 3), (2, 2, 4) 

To interpolate this data. We compute Lagrange Basis Polynomials: 

For 𝑥 values (e.g., 𝑥0 = 1, 𝑥1 =  2): 

𝐿0(𝑥) =
(𝑥 − 2)

(1 − 2)
, 𝐿1(𝑥) =

(𝑥 − 1)

(2 − 1)
 

For 𝑦 values (e.g., 𝑦0 = 1, 𝑦1 =  2):): 

𝑀0(𝑥) =
(𝑦 − 2)

(1 − 2)
, 𝑀1(𝑥) =

(𝑦 − 1)

(2 − 1)
 

Then, we construct the Polynomial as following: 

𝑃(𝑥, 𝑦) = ∑ ∑ 𝑓(𝑥𝑖,  𝑦𝑖) 𝐿𝑖(𝑥)𝑀𝑗(𝑦)
1

𝑗=0

1

𝑖=0
 

   Finally, we substitute values into the equation to compute the polynomial at any point (𝑥, 𝑦). 

Multidimensional interpolation can be applied to image processing where resampling of images can 

involve 2D or bicubic interpolation. It can also be applied to geographic information systems (GIS) 

and computational physics where simulations in multiple dimensions often require interpolating 

fields on a grid. Multidimensional interpolation is a natural extension of the univariate case, allowing 

the creation of multiple bounds that fit data in multiple variables. By using the product of the 

multidimensional boundary tensor and combining contributions from distinct variable dimensions, 

this method provides a structured and efficient way to perform interpolation in higher dimensional 

spaces. 

3. Error analysis in multidimensional interpolation 

Error analysis in multidimensional interpolation is a crucial aspect of numerical analysis and 

computational mathematics, as it helps to quantify how accurate the interpolation results are in 

representing the underlying function from which sample data is drawn.  
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Given a function  𝑓 ∶  ℝ𝑛 →  ℝ defined on a domain Ω ⊂ ℝ𝑛, we want to interpolate 𝑓 using known 

values 𝑓(𝑥1), 𝑓(𝑥2), . . . , 𝑓(𝑥𝑚) at 𝑚  points in Ω. 

3.1 Interpolation Error Definition 

The error in interpolation is typically defined as the difference between the actual function value and 

the interpolated value at a point 𝑋: 

𝐸(𝑋) = 𝑓(𝑋) − 𝑃(𝑋) 

where 𝑃(𝑋) is the interpolating polynomial or function. 

3.2 Lagrange Interpolation Error 

For Lagrange interpolation in n dimensions, the interpolation polynomial 𝑃𝑛(𝑥) can be expressed as: 

𝑃𝑛(𝑋) = ∑ 𝑓(𝑋𝑖)
𝑛

𝑖=0
𝐿𝑖(𝑋) 

The error can be expressed involving the derivatives of 𝑓: 

𝐸(𝑋) = 𝑓(𝑋) − 𝑃𝑛(𝑋) =
𝑓(𝑛+1)(𝜂)

(𝑛 + 1)!
∏(𝑋 − 𝑋𝑖)

𝑛

𝑖=0

 

Here, 𝜂 is some point in the domain of interpolation, and 𝑓(𝑛+1)(𝜂) denotes the (𝑛 + 1)-th derivative 

of 𝑓. 

In multidimensional spaces, error analysis can become complex due to the interaction of multiple 

dimensions. The overall error can be characterized by evaluating the maximum error among the 

dimensions: 

𝐸𝑚𝑎𝑥 =  max
𝑋∈𝐷

|𝑓(𝑋) −  𝑃(𝑋)| 

Analytical forms will differ based on the interpolation method used, but key considerations include: 

The order of the polynomial used in interpolation, the behavior of derivatives of the function in 

higher dimensions, and the distribution and density of data points. 

Error analysis in multidimensional interpolation provides a framework to understand how closely an 

interpolated function approximates the actual function. 
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4. Numerical examples 

We provide a first example demonstrating the Lagrange interpolation method and how to find the 

real and approximate solutions for a set of nonlinear equations. 

 

Example .3. 

Let's use a simple nonlinear function for demonstration 

 𝑓(𝑥)  =  𝑥2 − 2  

which has the real solution  𝑥 =  √2. 

We'll generate sample points and perform interpolation. Then we'll compute the error between the 

real solution and the interpolated solution. 

 

Code Matlab for example .3. 

function lagrange_interpolation()   

    real_solution = sqrt(2);   

    f = @(x) x.^2 - 2;  

    x_points = [0, 1, 2];  

    y_points = f(x_points);  

    x_interpolate = linspace(0, 2, 100);  

     y_interpolated = lagrange_interpolate(x_points, y_points, x_interpolate);   

    approximate_solution = find_approximate_solution(x_points, y_points);   

    error = abs(real_solution - approximate_solution);   

    fprintf('Real solution: %.5f\n', real_solution);   

    fprintf('Approximate solution: %.5f\n', approximate_solution);   

    fprintf('Approximation error: %.5f\n', error);   

plot_error_graph(x_interpolate, y_interpolated, f, real_solution, x_points, y_points);   

end   

function y = lagrange_interpolate(x_points, y_points, x)   

    n = length(x_points);   

    y = zeros(size(x));   

    for k = 1:n   

        L = ones(size(x));  

        for j = [1:k-1, k+1:n]   

            L = L .* (x - x_points(j)) / (x_points(k) - x_points(j));   

        end   

        y = y + y_points(k) * L;  
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    end   

end   

function approx = find_approximate_solution(x_points, y_points)   

    approx = lagrange_interpolate(x_points, y_points, sqrt(2));   

end   

function plot_error_graph(x_interpolate, y_interpolated, f, real_solution, x_points, y_points)   

    exact_values = f(x_interpolate);   

    errors = abs(exact_values - y_interpolated);   

    figure;   

    subplot(2, 1, 1);  

    plot(x_interpolate, errors, 'r-', 'LineWidth', 2);   

    xlabel('x', 'FontSize', 12);   

    ylabel('Error', 'FontSize', 12);   

    title('Error of Lagrange Interpolation', 'FontSize', 14);   

    grid on;   

    subplot(2, 1, 2);  

    plot(x_interpolate, exact_values, 'b-', 'LineWidth', 2); hold on;    

    plot(x_interpolate, y_interpolated, 'g--', 'LineWidth', 2);   

    plot(x_points, y_points, 'ro', 'MarkerFaceColor', 'r');  

    plot(real_solution, real_solution^2 - 2, 'ko', 'MarkerFaceColor', 'k');  

    xlabel('x', 'FontSize', 12);   

    ylabel('Function value', 'FontSize', 12);   

    title('Lagrange Interpolation vs Exact Function', 'FontSize', 14);   

    legend('Exact function', 'Lagrange Interpolated', 'Sample points', 'Real solution', 'Location', 

'Best');   

    grid on;   

end 

 

The provided MATLAB code in example 3 implements Lagrange interpolation to approximate the 

roots of a nonlinear function, specifically 𝑓(𝑥) = 𝑥2 − 2. 

We generate sample points for interpolation: 𝑥 = [0, 1, 2], and calculate their corresponding 

function values 𝑦. Then find the approximate value of the function at 𝑥 = √2 using Lagrange 

interpolation. The error between the real solution and the approximate solution is calculated and 

displayed. The top graph of Figure 1 displays the error in the Lagrange interpolation across the range 

of 𝑥 values from 0 to 2. The y-axis represents the error magnitude, which is very small (on the order 

of 10−16, indicating that the interpolation is highly accurate. The oscillations in the error graph 

suggest that while the interpolation is generally accurate, there are small fluctuations in the error 

values. 
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   While Bottom graph of Figure 1 compares the exact function 𝑓(𝑥) = 𝑥2 − 2 (shown in blue) with 

the Lagrange interpolated values (shown in green dashed line). The red dots represent the sample 

points used for interpolation, while the black dot indicates the real solution at 𝑥 = √2. The close 

alignment of the green dashed line with the blue line indicates that the Lagrange interpolation closely 

approximates the actual function across the range. 

 

 

Figure 1: Error of Lagrange interpolation (top graph) and Lagrange interpolation vs exact function 

(bottom graph) 𝑓(𝑥) = 𝑥2 − 2 

Table 1: Lagrange interpolation results for example 3 

Lagrange interpolation 

Real solution 1.41421 

Approximate solution 1.41421 

Approximation error 0.00000 

 

Example .4. 

In the example we use the function: 

𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) 

This function oscillates and has more intricate behavior, making it a good candidate for 

demonstrating Lagrange interpolation. 

We'll calculate an approximate value for 𝑓(𝜋/4), which is  
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𝑠𝑖𝑛(𝜋/4)  =  
√2 

2
≈  0.7071. 

We write MATLAB code to utilize this new function and compute the approximate solution for 𝑥 =
𝜋

4
. 

 

Code Matlab for example .4. 

function lagrange_interpolation()   

    real_solution = sin(pi/4);  

    f = @(x) sin(x);  

    x_points = [0, pi/6, pi/3, pi/2];  

    y_points = f(x_points);  

    x_interpolate = linspace(0, pi/2, 100);  

    y_interpolated = lagrange_interpolate(x_points, y_points, x_interpolate);   

    approximate_solution = lagrange_interpolate(x_points, y_points, pi/4);   

    error = abs(real_solution - approximate_solution);     

    fprintf('Real solution (sin(pi/4)): %.5f\n', real_solution);   

    fprintf('Approximate solution: %.5f\n', approximate_solution);   

    fprintf('Approximation error: %.5f\n', error);   

    plot_error_graph(x_interpolate, y_interpolated, f, real_solution, approximate_solution, x_points, 

y_points);   

end    

function y = lagrange_interpolate(x_points, y_points, x)   

    n = length(x_points);   

    y = zeros(size(x));   

    for k = 1:n   

        L = ones(size(x));   

        for j = [1:k-1, k+1:n]   

            L = L .* (x - x_points(j)) / (x_points(k) - x_points(j));   

        end   

        y = y + y_points(k) * L;  

    end   

end    

function plot_error_graph(x_interpolate, y_interpolated, f, real_solution, approximate_solution, 

x_points, y_points)   

    exact_values = f(x_interpolate);   

    errors = abs(exact_values - y_interpolated);   

    figure;   

    subplot(2, 1, 1);  

    plot(x_interpolate, errors, 'r-', 'LineWidth', 2);   

    xlabel('x', 'FontSize', 12);   
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    ylabel('Error', 'FontSize', 12);   

    title('Error of Lagrange Interpolation', 'FontSize', 14);   

    grid on;    

    subplot(2, 1, 2);  

    plot(x_interpolate, exact_values, 'b-', 'LineWidth', 2); hold on;    

    plot(x_interpolate, y_interpolated, 'g--', 'LineWidth', 2);   

    plot(x_points, y_points, 'ro', 'MarkerFaceColor', 'r'); 

    plot(pi/4, real_solution, 'ko', 'MarkerFaceColor', 'k');  

    xlabel('x', 'FontSize', 12);   

    ylabel('Function value', 'FontSize', 12);   

    title('Lagrange Interpolation vs Exact Function', 'FontSize', 14);   

    legend('Exact function', 'Lagrange Interpolated', 'Sample points', 'Real solution', 'Location', 

'Best');   

    grid on;   

end 

Points  [0,
𝜋

6
,

𝜋

3
,

𝜋

2
] were chosen to better fit our interpolation for 

𝜋

4
. The plot annotations for the real 

and approximate solutions are adjusted to reflect the new function and point of interest (see Figure 

2). 

Table 2 explain the real solution for 𝑠𝑖𝑛(𝜋/4), the approximate solution using Lagrange 

interpolation, and showing how well the interpolation fits the sine function, along with the associated 

errors. 

 

Figure 2: Error of Lagrange interpolation (top graph) and Lagrange interpolation vs exact    function 

(bottom graph) for 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) 
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Table 2: Lagrange interpolation results for example 4 

Lagrange interpolation 

Real solution 0.70711 

Approximate solution 0.70589 

Approximation error 0.00122 

 

Example .5. 

Let the function be: 

𝑢(𝑥) = 6𝑥 − 𝑥3 + 0.5 ∫ (6𝑡 − 𝑡3) 𝑑𝑡
𝑥2

0

 

Code Matlab for Eexample .5. 

function lagrange_interpolation()   

    real_solution = u(sqrt(2));   

    x_points = [0, 1, 2];  

    y_points = u(x_points);  

    x_interpolate = linspace(0, 2, 100);   

    y_interpolated = lagrange_interpolate(x_points, y_points, x_interpolate);   

    approximate_solution = find_approximate_solution(x_points, y_points);   

    error = abs(real_solution - approximate_solution);   

    fprintf('Real solution: %.5f\n', real_solution);   

    fprintf('Approximate solution: %.5f\n', approximate_solution);   

    fprintf('Estimation error: %.5f\n', error);   

    plot_results(x_interpolate, y_interpolated, real_solution, x_points, y_points);   

end   

function y = lagrange_interpolate(x_points, y_points, x)   

    n = length(x_points);   

    y = zeros(size(x));   

    for k = 1:n   

        L = ones(size(x));  

        for j = [1:k-1, k+1:n]   

            L = L .* (x - x_points(j)) / (x_points(k) - x_points(j));   

        end   

        y = y + y_points(k) * L;  

    end   

end    

function approx = find_approximate_solution(x_points, y_points)   

    approx = lagrange_interpolate(x_points, y_points, sqrt(2));   

end    
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function u_value = u(x)   

    u_value = zeros(size(x));   

    for i = 1:length(x)   

        t_squared = x(i).^2;  

        u_value(i) = 6*x(i) - x(i)^3 + 0.5 * integral(@(t) u_func(t), 0, t_squared);   

    end   

end    

function val = u_func(t)   

    val = 6*t - t.^3;  

end    

function plot_results(x_interpolate, y_interpolated, real_solution, x_points, y_points)   

    exact_values = u(x_interpolate);   

    errors = abs(exact_values - y_interpolated);       

    figure;   

    plot(x_interpolate, exact_values, 'b-', 'LineWidth', 2); hold on;   

    plot(x_interpolate, y_interpolated, 'g--', 'LineWidth', 2);   

    plot(x_points, y_points, 'ro', 'MarkerFaceColor', 'r');  

    xlabel('x', 'FontSize', 12);   

    ylabel('Function Value', 'FontSize', 12);   

    title('Lagrange Interpolation vs Exact Function', 'FontSize', 14);   

    legend('Exact Function', 'Lagrange Interpolated', 'Sample Points', 'Location', 'Best');   

    grid on;    

    figure;   

    plot(x_interpolate, errors, 'm-', 'LineWidth', 2);   

    xlabel('x', 'FontSize', 12);   

    ylabel('Error', 'FontSize', 12);   

    title('Interpolation Error', 'FontSize', 14);   

    grid on;   

end 

 

Figure 3 shows how the interpolation error varies across the defined range. The peak error signifies 

a point where the interpolation fails to accurately follow the original function. This graph illustrates 

the difference between the original function (blue line) and the interpolated function using Lagrange 

(dashed line). It shows that the interpolation may fit well at certain sample points (red dots) but 

diverges in other areas. These results in Table 3 indicate that the choice of sample points and their 

impact on the accuracy of interpolation plays a crucial role. It is essential to evaluate how well the 

interpolation aligns with the original function across specific ranges to ensure accurate estimations. 

In this case, the approximate solution is far from the true value, highlighting the need to improve 

point selection. 
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Figure 3: Error of Lagrange interpolation (top graph) and Lagrange interpolation vs exact function 

(bottom graph) for function in example 5 

Table 3: Lagrange interpolation results for example 5 

Lagrange interpolation 

Real solution 9.65685 

Approximate solution 4.10965 

Estimation error 5.54720 

 

Example 6. 

Let the function  

𝑓(𝑥) = 𝑥2 +
1

21
𝑥4 + ∫ (𝑡 − 𝑥) 𝑑𝑡

𝑥

0

 

and we perform Lagrange interpolation. 

Code Matlab for example .6. 

function lagrange_interpolation()   

    f = @(x) x.^2 + (1/21) * x.^4 + arrayfun(@(x) integral(@(t) (t - x) .* ones(size(t)), 0, x), x);       

    real_solution = f(sqrt(2));    

    x_points = [0, 1, 2];  

    y_points = f(x_points);  

    x_interpolate = linspace(0, 2, 100);  

    y_interpolated = lagrange_interpolate(x_points, y_points, x_interpolate);       
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    approximate_solution = find_approximate_solution(x_points, y_points);      

    error = abs(real_solution - approximate_solution);        

    fprintf('Real solution: %.5f\n', real_solution);   

    fprintf('Approximate solution: %.5f\n', approximate_solution);   

    fprintf('Approximation error: %.5f\n', error);       

    plot_error_graph(x_interpolate, y_interpolated, f, real_solution, x_points, y_points);   

end    

function y = lagrange_interpolate(x_points, y_points, x)   

    n = length(x_points);   

    y = zeros(size(x));   

    for k = 1:n   

        L = ones(size(x));  

        for j = [1:k-1, k+1:n]   

            L = L .* (x - x_points(j)) / (x_points(k) - x_points(j));   

        end   

        y = y + y_points(k) * L;  

    end   

end    

function approx = find_approximate_solution(x_points, y_points)   

    approx = lagrange_interpolate(x_points, y_points, sqrt(2));   

end    

function plot_error_graph(x_interpolate, y_interpolated, f, real_solution, x_points, y_points)   

    exact_values = f(x_interpolate);   

    errors = abs(exact_values - y_interpolated);       

    figure;   

    subplot(2, 1, 1);  

    plot(x_interpolate, errors, 'r-', 'LineWidth', 2);   

    xlabel('x', 'FontSize', 12);   

    ylabel('Error', 'FontSize', 12);   

    title('Error of Lagrange Interpolation', 'FontSize', 14);   

    grid on;    

    subplot(2, 1, 2);  

    plot(x_interpolate, exact_values, 'b-', 'LineWidth', 2); hold on;    

    plot(x_interpolate, y_interpolated, 'g--', 'LineWidth', 2);   

    plot(x_points, y_points, 'ro', 'MarkerFaceColor', 'r');  

    plot(sqrt(2), real_solution, 'ko', 'MarkerFaceColor', 'k');  

    xlabel('x', 'FontSize', 12);   

    ylabel('Function value', 'FontSize', 12);   

    title('Lagrange Interpolation vs Exact Function', 'FontSize', 14);   

    legend('Exact function', 'Lagrange Interpolated', 'Sample points', 'Real solution', 'Location', 

'Best');   
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    grid on;   

end 

 

The Lagrange interpolation results in Table 4 indicate that the approximate solution 1.26261 is 

relatively close to the real solution 1.19048. The approximation error of 0.07213 signifies a small 

deviation, suggesting that the interpolation method performed quite well in this case.  The Figure 4 

shows the error across the range, indicating that the error fluctuates but remains relatively small, 

peaking around \(0.05\). The interpolation closely follows the exact function, demonstrating good 

accuracy in this example. The Lagrange interpolation method yielded a satisfactory approximation 

in this case, with a minor error, indicating that the interpolation closely represents the original 

function over the chosen range. 

 

 

Figure 4: Error of Lagrange interpolation (top graph) and Lagrange interpolation vs exact function 

(bottom graph) for function in example 6 

Table 4: Lagrange interpolation results for example 6 

Lagrange interpolation 

Real solution 1.19048 

Approximate solution 1.26261 

Approximation error 0.07213 
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Example 7. 

Let the function 

𝑓(𝑥, 𝑦) = √(𝑥2 + 𝑦2) + 𝑒𝑥𝑝(𝑥 + 𝑦) 

and we perform Lagrange interpolation. 

Code Matlab for example 7. 

function nonlinear_interpolation()   

    f = @(x, y) sqrt(x.^2 + y.^2) + exp(x + y);    

    x_points = linspace(-2, 2, 5);  

    y_points = linspace(-2, 2, 5);  

    [X, Y] = meshgrid(x_points, y_points);   

    Z_exact = f(X, Y);  

    x_interpolate = linspace(-2, 2, 100);   

    y_interpolate = linspace(-2, 2, 100);   

    [X_interp, Y_interp] = meshgrid(x_interpolate, y_interpolate);    

    Z_approx = lagrange_interpolate(x_points, y_points, f, X_interp, Y_interp);    

    Z_exact_interp = f(X_interp, Y_interp);   

    absolute_error = abs(Z_exact_interp - Z_approx);    

    figure;   

    subplot(1, 2, 1);  

    surf(X_interp, Y_interp, Z_exact_interp, 'FaceAlpha', 0.5);   

    hold on;   

    surf(X_interp, Y_interp, Z_approx, 'FaceAlpha', 0.5);   

    title('Exact and Approximated Solutions');   

    xlabel('X-axis');   

    ylabel('Y-axis');   

    zlabel('Z-axis');   

    legend('Exact Solution', 'Approximated Solution');   

    grid on;    

    subplot(1, 2, 2);  

    surf(X_interp, Y_interp, absolute_error);   

    title('Absolute Error of Approximations');   

    xlabel('X-axis');   

    ylabel('Y-axis');   

    zlabel('Absolute Error');   

    colorbar;   

    grid on;    

    fprintf('Numerical Values of Absolute Errors:\n');   

    disp(absolute_error);  
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    fprintf('Note: It is important to consider the numerical values or use the absolute error graph to 

assess the accuracy of the approximation compared to the exact solution.\n');   

end    

function Z = lagrange_interpolate(x_points, y_points, f, X, Y)   

    Z = zeros(size(X));   

    m = length(x_points);   

    n = length(y_points);    

    for i = 1:m   

        for j = 1:n   

            Lx = 1;   

            Ly = 1;    

            for k = 1:m   

                if k ~= i   

                    Lx = Lx .* (X - x_points(k)) / (x_points(i) - x_points(k));   

                end   

            end               

            for l = 1:n   

                if l ~= j   

                    Ly = Ly .* (Y - y_points(l)) / (y_points(j) - y_points(l));   

                end   

            end               

            Z = Z + f(x_points(i), y_points(j)) * Lx .* Ly;   

        end   

    end   

end 

 

In Figure 5, the exact solution in blue and the approximate solution in orange (left figure), allowing 

for comparison of the two figures. The absolute error between the two solutions is shown (right 

figure), which helps in assessing the accuracy of the interpolation. 
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Figure 5: The exact solution (in blue) and the approximate solution (in orange) in the left figure, and 

the absolute error between the two solutions (right figure) for example 7 

Example 8 

We repeat the previous example and calculate the exact solution and approximate solutions using 

different numbers of points [1, 5, 10, 20]. 

𝑓(𝑥, 𝑦) = √(𝑥2 + 𝑦2) + 𝑒𝑥𝑝(𝑥 + 𝑦) 

Code Matlab for example 8 

function nonlinear_interpolation_multiple_iterations_combined()   

    f = @(x, y) sqrt(x.^2 + y.^2) + exp(x + y);    

    iterations = [1, 5, 10, 20];       

    x_interpolate = linspace(-2, 2, 500);  

    y_interpolate = linspace(-2, 2, 500);   

    [X_exact, Y_exact] = meshgrid(x_interpolate, y_interpolate);   

    Z_exact = f(X_exact, Y_exact);  

    absolute_errors = zeros(size(iterations));    

    figure;    

    for k = 1:length(iterations)   

        num_points = iterations(k);           

        x_points = linspace(-2, 2, num_points);    

        y_points = linspace(-2, 2, num_points);   

        Z_approx = lagrange_interpolate(x_points, y_points, f, X_exact, Y_exact);    

        absolute_error = abs(Z_exact - Z_approx);           
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        max_absolute_error = max(absolute_error(:));   

        absolute_errors(k) = max_absolute_error;    

        subplot(2, length(iterations), k);  

        surf(X_exact, Y_exact, Z_exact, 'FaceAlpha', 0.5, 'EdgeColor', 'none');   

        title('Exact Solution');   

        xlabel('X-axis');   

        ylabel('Y-axis');   

        zlabel('Z-axis');   

        grid on;   

        view(3);           

        subplot(2, length(iterations), k + length(iterations));  

        surf(X_exact, Y_exact, Z_approx, 'FaceAlpha', 0.3, 'EdgeColor', 'none');   

        title(['Approximation with ', num2str(num_points), ' Points']);   

        xlabel('X-axis');   

        ylabel('Y-axis');   

        zlabel('Z-axis');   

        grid on;   

        view(3);   

    end    

    disp('Maximum Absolute Errors for each iteration:');   

    disp(array2table(absolute_errors', 'VariableNames', {'MaximumAbsoluteError'}, 'RowNames', 

cellstr(num2str(iterations'))));   

end    

function Z = lagrange_interpolate(x_points, y_points, f, X, Y)   

    Z = zeros(size(X));   

    m = length(x_points);   

    n = length(y_points);    

    for i = 1:m   

        for j = 1:n   

            Lx = 1;   

            Ly = 1;    

            for k = 1:m   

                if k ~= i   

                    Lx = Lx .* (X - x_points(k)) / (x_points(i) - x_points(k));   

                end   

            end               

            for l = 1:n   

                if l ~= j   

                    Ly = Ly .* (Y - y_points(l)) / (y_points(j) - y_points(l));   

                end   

            end               

            Z = Z + f(x_points(i), y_points(j)) * Lx .* Ly;   

        end   

    end   

end 
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The resulting plot shows the exact solution and approximate solutions using different numbers of 

points (see Figure 6). Exact Solution shown in the top row of the plot. It represents the exact surface 

of the given function, which appears smooth and curved. The peak in the middle indicates the highest 

values of the function, while the lowest values appear at the ends. Approximate solutions shown in 

the bottom row. Each plot is an approximation using a different number of points (1, 5, 10, 20). As 

the number of points increases, the approximate solutions get closer to the exact solution. When 

using a single point, the surface appears very flat, which means that the approximation is inaccurate. 

As the number of points increases, the surface becomes more complex and approaches the exact 

shape. Table 5 shows the maximum absolute errors for the iterations (1, 5, 10, 20). 

 

 
Figure 6: The exact solution and approximate solutions using different numbers of points for                                           

example 8 

 

Table 5: Maximum Absolute Errors for each iteration 

 

 

 

 

 

 

 

 

Iteration Maximum Absolute Errors 

1 56.474 

5 0.41982 

10 0.18032 

20 0.10601 
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5. Computational results 

Developing the Lagrange interpolation methodology and its analysis can enhance its accuracy, 

efficiency, and flexibility in solving multidimensional nonlinear equations. This can open new 

horizons for more complex and innovative applications in various fields. The Lagrange interpolation 

method may be more accurate in estimating values at unknown points. A good analysis can lead to 

the detection of errors and dimensions that can be improved. As the algorithm is improved, it is 

possible to reduce the number of points required to achieve a given level of accuracy. This can reduce 

computational complexity. Developing an analytical study of the algorithm can help to obtain 

accurate estimates of errors, allowing us to understand how and to what extent nonlinear 

complexities affect the results. Increasing the flexibility of the algorithm in dealing with certain 

constraints or nonlinear functions can open the way to solve a wider range of nonlinear equations. 

6. Discussion and conclusion 

The current study provides a comprehensive analysis of the Lagrange method and its improvements. 

The results confirm that improving the code using techniques such as analysis and the Howern 

method leads to increased efficiency and reduced time required to calculate the interpolated values. 

The use of the Lagrange method can be expanded to include new types of mathematical models, 

such as those used in data science and network analysis. It is useful to combine the Lagrange method 

with artificial intelligence and machine learning techniques to enhance modeling and prediction 

capabilities. Further studies should be conducted to analyze typical errors and how to improve the 

method to address problems related to numerical analysis. 
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لاغرانج لحل المعادلات غير الخطية متعددة الأبعاد  التعديل الداخلي()استيفاءتطوير وتحليل طريقة   

 

 

 المستخلص 

لاغرانج وتحليلها يمكن أن يعزز من دقتها وكفاءتها ومرونتها في حل المعادلات غير الخطية متعددة   لاستيفاءإن تطوير منهجية ا

لاغرانج كوسيلة فعالة لحل المعادلات غير الخطية متعددة الأبعاد. تعتمد هذه    الاستيفاءتطوير وتحليل طريقة    المقالةالأبعاد. تناقش  

دقيقة وسريعة للمشكلات الرياضية المعقدة. تم تحسين كود تابعالطريقة على تقدير القيم ال ة من نقاط معروفة، مما يوفر حلولاً 

 لاغرانج لتحقيق أداء أعلى وكفاءة أكبر من خلال تقنيات مثل استخدام قاعدة بيانات الحدود.  الاستيفاء
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