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1. Introduction

The understanding of characteristic transmission and retention in materials and processes
achieving the application of fractional calculus [1, 2]. Numerous scientific and technological
domains, including as biology, chemistry, viscoelasticity, anomalous diffusion, fluid mechanics,
acoustics, and control theory, use this technique. In these areas of mathematics, fractional
differential equations are involved, particularly integro-differential equations with singularities
[3-6]. Researchers have devised analytical or numerical approaches to solve these fractional
differential equations Many transformation can solve many fractional differential equations such
as Rishi transform [7, 8] Kamal transformation[9] Sawi transform [10, 11] Sumudu transform
[12]. The solution to the fractional order T.Regge problem is covered in this article. Previous
works [13-15] have proven this solution’s existence and uniqueness. This study focuses on
solving the T.Regge problem for fractional order, using the Rishi transformation approach when
applicable and meeting the requirements for the original function [13-15]. Previous study was
suggested several numerical or analytical techniques for solving fractional differential equations,
including as [5, 16-18]. In this research, we studied solutions for the fractional T. Regge
boundary value problem, as is known [19], Studying the Schrodinger operation on the half-axis
R + with potential q(t) compactly supported on this interval is related to studying the Regge

spectral issue on this interval. [0, a]. This problem defined as the form

—u" (%) + q()ulx) = P*p(u(x) ; x€[0,a],
U(u)=u(0)=0 |, U,(u) =u'(a) —idu(a) =0, (D

And the T.Regge problem for fractional order in [13], [14] defined as:
—(D&u(t) + q() ulx) = A2p(t) u(t); x € [0,a], l<a<?2 (2)

And the same boundary conditions known as Regge conditions such that the unknown function

u(x) € C[0, a] , and the variable coefficients q(t), p(t) € L, [0,a].

A Is a parameter in the spectrum.[14], [19], [20]. We introduced the uniqueness and existence
theorems for fractional order ordinary differential equations [13], [15], [21]. In order to solve the
fractional order Regge issue, the Kamal transformation is created in this study. The following is
how the paper is set up: The essential concepts and characteristics of fractional calculus are
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provided in Section 2. The fractional integral and derivative Kamal Transform is presented in
Section 3. Derived solution of T.Regge fractional order via Kamal transform has been showed in
section 4.To demonstrate the efficacy of the suggested strategy, Section 5 provides a few instances
of FDEs.

2. Preliminaries

Fractional integrals, derivatives, and other integral transforms are used in both pure and applied
mathematics to solve a wide range of differential and integral equations. Wherein we make use of
crucial definitions for our research, like: first, Fractional Integral of Order a [5], [16], [22]: for

each a > 0 and a integrable function y(x), the right FI of order a is defined:
1 t
JEV) = o [ =) y@)ds, —m<a<x<e @
I'(a) J,

Second, [16], [23] for every a, and L = [a] the Riemann-Liouville derivative of order « defined

as

1 dL t
DEVE) = ), (9 y(9ds )

Third, let@ > 0,L = [a]. The Caputo derivative operator of order a and y(x) be n-times

differentiable function, x > a is defined as [5], [16]

L

1 t d
DEY) = =y | =0 (§) YOl (5)

Remark 1: [2], [10], [16], [21], [22], [24] The following are some fundamental characteristics of

fractional calculus:

1. 1. A fractional operator is a linear operator (integral and differential).
2. The following is the definition of composition between two Riemann-Liouville

integrations of orders e and b:
als alff(s) = alsb al_gf(s) = Ite+bf(s)- (6)

3. Forl = pB,and f(s) € Cla, b], and for every element s € [a, b], then
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D Il () = FEDYTP £ (s). )

The relation is done.

4. The definition of composition of the Liouville-Caputo operator of order a between
fractional (differentiation and integration) is as follows:

pl(lf(s)) = £(5). ®)

5. Liouville-Caputo operator of order a: between fractional (integration and differentiation)
composition, and m = [«] is defined as:

m—1 _ Kk
JECEDEF () = ) — . S W () 9
k=0

In general, *GDx (ol f(x)) # ol¥ ("GD5 f(x)).

6. Use the differential and fractional integral of the Liouville-Caputo of function s™, m > 0,

we obtain : Ifs™ = r(1+m)

r(1+m) —
T s and LEDks™ = ————gm~@a, (10)

- r(i+m-a)

3. The Kamal Transformation [9]

Based on the fundamental properties and simplicity of the mathematics involved, the Kamal
Transform derives its name from the classic Fourier integral. The Kamal transform was created by
Abdelilah Kamal to facilitate the time domain solution of ordinary and partial differential
equations. Mathematical solutions for differential equations usually involve the use of the Fourier
transformation, Laplace, Sumudu, and Elzaki, Aboodh, and Mahgoub transforms. Moreover,

Kamal transform and some of its basic ingredients are employed.

Kamal Transform of the function f(t) for t > 0 is defined by the integral

KIF®)] =F@) = [° f(t) evdt. >0, ky<v<lh,

and it is denoted by the operator K(.)
If K[f(t)] = F(v), then f (t) is the inverse Kamal Transform of F(v) . in symbol,
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fO =K [Fw)]=K" Uw f@® e%tdtl
0

Where K1 is the inverse Kamal Transform operator.

Properties 1:[25]Kamal Transformation for some known functionfort > 0,ve€ C,a € R,n €

N:

i. K[l]=v

ii. K[x°]=0!v?=v*r@+1),0=0
i, K[e"]=—

iv. Klsin at] = 1:;%

V. K[cos at] = 1+:2v2

vi. K[sinh at] = %

vii.  K[cosh at] = —.

Property 2:[25] Let n = 1 and G (v) be the Kamal Transform of the function g(t). The Kamal

Transform of n derivative of £(t) is given by

Klg™ (O} =560 ~ 5590 = 55 (0) . = g™ D(0)

Klg"()] = = G(v) — Tiz§ v*™*1g%(0).

Property 3:[25] Let M(v) and N (v) denote the Kamal Transform of m(t) and n(t)

respectively. If (m *n) (¢) = [,

, m(@) n(t—1)dr.

Where * denotes convolution of g and g, then the Kamal Transform of the convolution of m(t)
and n(t) is K[m(t) * n(t)] = M(v) N(v).
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Properties 4. Some Properties of the Inverse Kamal Transformation[25]

g@) g@)
G(v) G(v)
=K HG(v)} =K HG(v)}
2 sinat
v 1 -
1+ a2v? a
t? 1%
3 IR
v - Tt a2 cosat
v™n t" v?2 sinhat
>0 n! 1 — a?v? a
v 2
et _v coshat
1—av 1 — a?p?

3.1 Kamal Transform of Fractional Integrals and Derivatives [26]
3.1.1 Fractional Integral

Proposition 1: If @ € [n — 1,n), Using the Kamal transform of the fractional integral formula,

we have:

1 1

K[1°9(®)] = K[ *D29(0)] = 7255 [ (¢ = $)° g (s)ds = 7= L[t?|L[g(®)] = vG (v).

3.1.2 Fractional Derivatives

Proposition 2: Let G(v) is a Kamal transform for g(t) , the Kamal transform for Reiman-

Liouvile fractional Derivative of order « is
K[D%g(t)] = v™*G(v) — XkZg vF 1 g 1(0).
Proof: Reiman-Liouvile fractional derivative and related fractional integral give us
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K[D%g(t)] = k(D™I""*g(t)}

And from properties Kamal Transform for derivative we have

Klg"(®)] = —G(V) Xk=o v g (0)
So K[Dg(8)] = K{D"I"g(D)} = = (KU *g(6)} - Xjch v+t L2 noeg(0) =
pnpn- aG(v)_Zk : Uk n+ipn- k- 1D (n— a)g(o) =v aG(U) Zk B Uk n+lpa- k- 1,9(0)

Preposition 3: Let G(v) is a Kamal transform for g(t) , the Kamal transform formula for

Caputo fractional Derivative of order a is

K[°DEg(t)] = v™*G(v) — Xi=p v+ g*(0),

Proof: Reiman-Liouvile fractional derivative and related fractional integral give us
K[D*g(t)] = KU"*D"g(t)}

So K[“Dfg(D)] = K(I"“D"g(0)} = v" “{K{D"g(D)} = v~ {5 G(v)
k— 1 ,,k-n+1 k(())} = ph~apy—"n _ ;{1 5 v avk—n+1gk(0) — v‘“G(v) _

Zk:o k—a+1 k(())

4. Solution of fractional order T.Regge boundary value problem by Kamal

Transformation Method

In this section we used the Kamal Transformation to find solution of our problem in the

following cases. The T. Regge problem for fractional order is defined as

—SDFu(®) + q(t) u(®) = 2p(Ou(t) ; te0,a], 1<a<2
u(0) =0, u'(a) —idu(a) = 0.

We solve the T.Regge problem for Farctional order in this section and method by Kamal

transformation if it is exist and the conditions of origin function are hold.
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Case 1: Constant Coefficients

In this case we suppose that p(x) = M = q(x)

The Fractional differential equation is —$D%u(x) + Mu(x) = A2Mu(x)

— SDZu(x) + M(A2 — Du(x) =0

Apply Kamal transformation for both sides

K{5Dfu(x)} + K{M(A* - Du(x)} = K{0}

And Kfu(x)} = [ e u(e)dt = Uw), K{0} = 0

From properties of Kamal Transformation, we have

The Kamal Transformation of Caputo FD is K[ °Dfg(t)] = v™*G(v) — Yr=s v*~ % 1gk(0)

And we have a € (1,2] thus

K[°D&u(x)] = v *U(v) — Z vFmetlyk(0) = v=*U(s) — v *u(0) — v2%u'(0)
k=0

From Boundary condition u(0) = 0 so
K[ D&u(x)] = v=*U(s) — v*~2%u'(0)

Then K{{DZu(x)} + K{M (A% — Du(x)} = K{0}

- U W) — v U (0) + MA> - DUW) =0

— v W) + M(A%2 — 1)U(s) = v2 %' (0)

U)W ¥+ M2 -1)) = Av* @ Where A = u'(0)

Av?—« . Av?
v=2+M(A2-1)  (1-M(1-2A2)p%)

—-U() =

This article is an open access article distributed under 198

the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0 license)

h

t

://creativecommons.org/licenses/by-nc/4.0/).



http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

H Hilmi Bas ] Sci42(2) (2024)191-206

The corresponding inverse Kamal transform is K(g(t)) =G6w) & g(t) =K 1(GCWw))

If it is exist we can take Inverse Kamal for both sides we obtain

K-{U@W)}=K! {u_ﬂﬁ—_m)} Since K{u(x)} = U(w) > u(x) = K-{U®)}

Av?

Sowegetu(x) = K1 {m

} , Aisconstant ,a € (1,2], Ais complex number
The Fractional Boundary Value Problem answer is now available. Between 1 and 2 is

_ -1 Av? .
ulx) = K {(1—M(1—/12)va)} ;x €0,a] , a€(1,2]

Such that A = u/(0) is any non zero constant.

fa=2-ut)= K {(1—Mélli212)v2)} - M(f-/m sinh (V M(1 - ’12)")

Case 2: Variable Coefficients

In this case we assumed that the weight function p(x) = 1 and g(x) any continuous function
And suppose that g(x)u(x) = f(x)

Now the Fractional differential equation become

—6DFux) + f(x) = Pu(x) — §DFulx) + 1%ulx) = f(x)

By applying Kamal transformation for above equation, we obtain

K{5DFu(0)} + K{2*u(x)} = K{f (x)}

Let K{u(x)} = [ evu(®)dt = Uv) and K{f(x)} = [ e7 f(D)dt = F(v)

From properties of Kamal transformation for a € (1,2] we have
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1
K[¢D&u(x)] = v *U(v) — Z vt 1y k(0) = v=*U(s) — v~ *u(0) — v2~%u'(0)
k=0

From Boundary condition u(0) = 0 so
K[¢D&u(x)] = v=*U(s) — v*2%u’(0) Then K{DZfu(x)} + K{A*u(x)} = K{f (x)}

- v *U(w) —v? %' (0) + 22U(w) = F(v)
— v UW) + 2UW) = F(v) + v2~%u'(0)
- U)W *+21%) =F(v) + Av*™¢ Where A = u’(0)

Av?—@a Gv) _  Av? veF(v)
vTO+AZ  vTR4AZ 142%20% 0 1+4A%0¢

—-U) =

If it exists, we can use the Inverse Kamal transform to obtain
K{u(x)} =U@) » u(x) = K"{{U()} and K{f (x)} = F(v) = f(x) = K"H{F(v)}

KUY = K {4 k1 {220

1+A2p% 1+1%2p@
For more information about Inverse Kamal Transform you can see [9], [25]
5. Hlustrative examples

This section lists three problems that show how useful the Kamal transformation is. These
examples demonstrate how to find precise solutions for linear fractional differential equations of
fractional order in both the Riemann-Liouville and Liouville-Caputo senses. The examples
mentioned were first addressed in references [13], [14] using Laplace transformation methods and
other techniques. However, in this paper, we introduce a new method to solve these problems using

the Kamal transformation method.

Example 5.1: Consider the fractional boundary value problem

3
_Cp2 1 — 2L :
oDfu(t) + 10u(t) =1 10u(t) ; 0<t<1
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u(0) =0, u'(l) —idu(l) =0

. 1
Solution: we have M = =

3 3
Now  —§D7u(®) + 5u(e) = 55 2%u(®) ~ §D7u(e) = 55 (1 = )u(®)

Take Kamal for both sides we get

3
K {8D§u(t)} = K{% (1 — 2%)u(t)} from properties of the Kamal Transformation,

The Kamal Transformation of Caputo FD is

K[°D&u(t)] = v *U () — Yi_, vF"* 1k (0) = v~2U(v) — v~ %u(0) — v?~*u’(0),

So K {thgu(t)} = v_%U(v) — v_%u(O) — v%u’(O),
K{ﬁD?u(t)} = {v_gU(v) — v%u’(O)},
Now v ™20 (v) — v2u'(0) = = (1 — 22U (),

5 (ﬁ TS 1)) U(v) = vau'(0) , where w/(0) # 0

1
S5a,7 2
Uw) =—229Q | ywv)=—2=  where g = u'(0)
v 2+--(22-1) 1+(A2-1)v2

Apply inverse Kamal transform for above equation we obtain

u(®) =K (U@W)) = K (g—>

RNV
1+10(/1 1)v2

See [9], [25], For inverse Kamal and find the solution.

On the other hand, we can get some result easily by using Fractional integral operator before

using Kamal transform, we will explain below
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3 1 1
_Cp2 — )2
ODtu(t)+10u(t) A 1Ou(t)

3
ngu(t) = % (1 — 2%)u(t) apply integral of order % for equation we obtain

k

3 3 1
IESDtZu(t) =u(t) — z %fk(O) =u(t) —u(0) —tu'(0) = u(t) — tu'(0)
k=0 M:

Now w(t) — tu'(0) = = (1 — D)3 (u(®))

Take Kamal Transformation for both sides K{u(t)} — bK{t} = 1—10 (1- AZ)K{I%(u(t))}

From properties Kamal transform for fractional integral we have

K[Ig(D)] = vG(v) S0 U(w) — bv? = = (1 — 22) v2U(v),

U(w) =—2  Thenu(t) = K- (U@W)) = K~ <”—>

Laz—1)vz ~(A2-1)v2
1+10(/‘l 1)v2 1+10(l 1)v2

3
Implies that, the exact solution is u(t) = gtEs,, (1—10 (1- Az)tE).
5

Example 5.2:

3
—6D2u(t) + u(t) = 22u(t); 0<t<l,l<a<?

u(0) =0, u'(1) — iAu(1l) = 0.

3 3

Solution: if we have 2 = i Now  —§D?u(t) + u(t) = —u(t) » §D2u(t) = 2u(t)

Since 1 < a < 2, we have: I% [D%u(t]) = ZI%[u(t)] su(t)+at+b= ZI%[u(t)]

Taking Kamal transform for both sides we get
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U(v) + av? + bv = ZUE[U(U)] SO U(v)(Zv% —1) =av?+bv

Sou(t)=a1(‘1( U; )+bK‘1< 2 )

2v2-1 2v2-1

From the boundary conditions we can find a and b easily.

And the solution is u(t) =

c1 t ta+1 t2(x+1
2 (ﬁ r@) T raan T )
Example 5.3:

3
—SDZu(t) +u(t) = 22u(t); te[01],a € (1,2]

u(0) =0, u'(1) —idu(1) = 0.

3
Solution: if we have 2 = 1 Now —ngu(t) + u(t) = u(t) from simplification we get

3

8Dfu(t) =0 Since 1 < a < 2, take Kamal transform for both sides we get
3 3 3 1
K{SD?u(t)} = K {0} implies that K {gD;u(t)} = {v 72U () — v2u' (0)}

3 1
Now v 2U(v) — vzu'(0) = 0 » U(v) = av?, where a = u'(0)
Take inverse Kamal transform we get u(t) = at.

Conclusions

This study looks into Kamal's transformation approach, which is a useful technique for resolving
differential fractional equations (FDEs). Moreover, providing benefits including lowering
equation complexity, streamlining their forms, and managing FDEs with constant coefficients.
It offers an alternative to current FDE methods and has the potential to make a significant
contribution to fractional computation, despite its limitations like any other method. This study's

novel work, the successful application of the Kamal approach to the Regge fractional order
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problem, yields simple and encouraging findings. Lastly, the Kamal transformation technique is

a workable approach for addressing FDEs, and if they get more complex, it may prove to be an

even more helpful tool for controlling FDEs.
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