Vol,, 37 (2), 276-292, 2019

The Numerical Solutions of 2D Time-Space Fractional Bioheat Problem by
Using Fractional Quadratic Spline Method

Ammar Muslim Abd-alhussein and Hameeda Oda Al-Humedi?

1 Department of Mathematics, Open Educational College in Basra, Basra, Iraq.
2 Department of Mathematics,College of Education for Pure Science, Basra University,
Basrah, Iraq.
Email': ammar.muslim1@yahoo.com Email®: ahameeda722@yahoo.com

Doi 10.29072/basjs.20190210, Article inf., Received: 13/5/2019  Accepted: 2/8/2019 Published: 31/8/2019

Abstract

In this article, a time-space fractional two-dimensional bioheat transfer model of
temperature distribution in tissue has been solved Caputo fractional derivative for time-
fractional derivative with «a order and fractional quadratic spline for space of fractional
derivative with 8 order. The goal of this article is to make a comparison between exact and
numerical solutions. Theoretically, the stability analysis uses the Von Neumann method.
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1. Introduction

The largest organ of the human body is skin, which has significant in thermoregulation. Skin
works as a generator, transmitter, absorber, and conductor of heat. Heat transportation in
living tissue is a complex operation and includes convection, conduction and blood perfusion,
and refreshing of the human body. The heat generation results from a chain of chemical
reactions occurring in the living cells, and the occurrence of blood perfusion due to energy
exchange between the living tissue and blood flow through small vessels in the living tissue,
and best describes the thermal distribution is Pennes bioheat equation [1] as follows:

peciTe = pTex + Wypcp (T = T) + Q + G, x€(Omn), t>0 1)

The mathematical resolve of the complex thermal interaction between the vasculature and
tissue has been a topic of interest for numerous physiologists, physicians, and engineers [2].
Temperature distribution in skin tissue is important for medical applications like skin cancer,
skin burns, etc. [3]. The accurate solution of Pennes' equation does not exist specifically, so
approximation and numerical techniques should be used to solve this equation. Karaa et al.
[4] developed numerical methods for computer simulation and modeling of a 3-dimensional
heat transfer problem in biological bodies. A finite difference discretization scheme is used to
discretize the governing partial differential equation. Singh et al. [5] presented the solution of
fractional bioheat equation using the shifted Grinwald finite difference approximation for
Riemann-Liouville space fractional derivative FDM and HPM of the fractional derivative of
space and the Caputo fractional for the fractional time. It has been spotted that the time
possessed to achieve hyperthermia in a location is reduced as the order fractional derivative is
decreased. Kunter and Seker [6] constructed a 3D bioheat transfer model of the human eye by
using weighted extended B-splines as shape functions for the finite element method. The
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simulation results which are verified using the values reported in the literature are pointed out
to better efficiency in terms of the accuracy level. Dehghan M. Sabouri M. [7] discussed the
two cases: 1D and 2D Pennes' bioheat model, in the two-dimensional case both triangular and
quadrilateral elements are investigated. Through test problems, the discretization error
generated from this method is reported. Damor et.al [8] discussed the approximate solution of
fractional Pennes' bioheat equation with constant and Sinusoidal heat flux conditions on the
skin using implicit finite difference method and the fractional time derivative is of Caputo
form. Uzezi and Shariffudin [9] solved 2D Bioheat equation on a distributed system through
employing Message Passing Interface (MPI) and Parallel Virtue Machine (PVM) is presented
using applying domain decomposition strategy. It is noted that the efficiency is strongly
dependent on the mesh size block numbers and the number of processors for both MPI and
PVM. Different strategies to get better computational efficiency are proposed. Cui, et.al [3]
showed a numerical solution for the time-fractional Pennes' bioheat transfer equation on skin
tissue and solved using Fourier Sine transform for second-order derivative and the Caputo for
the fractional time. Ezzat, et.al [10] discussed the 2D fractional bioheat equation using
Laplace transforms of second-order derivative, and investigation of the numerical solutions
were performed to search the temperature transfer in the skin uncovered to immediate surface
heating. Some comparisons were shown to estimate the impact the fractional-order parameter
a has on the temperature wave. Mishra and Rai [11] presented a numerical solution of the
fractional bioheat equation when they used a finite difference of second-order derivative and
the fractional derivative using Grunwald Letnikov for the fractional time, also discussed and
analyzed the stability and convergence. Luis Ferr'as et.al [12] studied the fractional bioheat
transfer equation and the approximate solution using a finite difference of second-order
derivative and the fractional time derivative using Caputo derivative and discussed the
stability and convergence depending on this scheme. Pandey [13] discussed the 2D fractional
bioheat equation using Galerkin FEM and he found the solution method in the cylindrical
living tissue and noted that the effects of thermal conductivities have significant and more
remarkable effects on temperature variation in living tissue. Damor et.al [14] studied the
fractional bioheat equation when the time-space fractional derivative is in the form and
solved it using Caputo fractional derivative of order a € (0, 1] and Riesz—Feller fractional
derivative of order § € (1, 2] respectively, the result in terms of Fox’s H-function with some
specific cases is obtained, by using Fourier—Laplace transforms. Roohi R. et.al [15] solved
space-time fractional bioheat equation using fractional-order Legendre functions of fractional
space order derivative and the fractional time derivative using Caputo derivative, and he
noted that the quantity of the temperature at the skin surface is a strong function of the space-
fractional order and conversely the impact of the time-fractional order is almost negligible.

In this paper, we will solve a time-space fractional two-dimensional bioheat transfer model
of temperature distribution by Caputo fractional derivative for time-fractional derivative with
a order and fractional quadratic spline for space-fractional derivative with 8 order.

2. 2D Pennes’ bioheat transfer equation with time-space fractional derivative

The 2D time-space fractional Pennes’ bioheat transfer equation for modeling skin tissue heat
transfer is expressed as [3], [9-10], [15-16]

A%T (x,y,t) APT(xyt)  9PT(xyt)
ttt Py = .u( dxB + 6yB ) + Wbcb(Ta - T) + Q + dm (2)

x € (0,n),y€ (0,s), t>0,
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with initial and boundary conditions,

T(x,y,0) = fi(x,y), x € (0,n),y €(0,s), 3
3] .
ZTGyt| =g, ye@©s), t>0 (4)
i=0,n
ZT(xjt)|  =ga(et), x€(0n), t>0 (5)
oy j=0,s
where,

a € (0,1) is fractional order of time,

B € (1,2) is fractional order of space,

x and y are the distances from the skin surface,

p: = 1000 is constant representing the density tissue (kg/ m3) ,

c; = 4000 is constant representing the specific heat of tissue (Jk/kg ),

u = 0.5 is the tissue thermal conductivity (J/sm),

W, = 0.0005 is the mass flow rate of blood per unit volume of tissue (kg/sm?),
cp = 4000 is the specific heat of blood(J /kg),

Q,, = 420 is the metabolic temperature generation per unit volume (J/ m?),

T, = 37 represent the temperature of arterial blood,

T is the temperature of tissue,

Q is the metabolic heat source,

and Wy c, (T, — T) represents the blood perfusion. It is value mentioning that Pennes’

obtained constant W}, experimentally for a human forearm.

Definition 2.1: The Riemann-Liouville fractional derivative of order « € (n — 1,n),n €
N, t > a defined by equation [3], [5], [8], [10-12], [14-17]

am —a—
KDEF(t) = ﬁ@f;(t — P ) dy.

Definition 2.2: The Caputo fractional derivative of order « € (n — 1,n),n € N,t > a
defined by equation [3], [5], [8], [10-12], [14-17]

DEF(L) = ——— [S(t =)™ 2 F ().

I'(n-1) dyn

Definition 2.3: The Gauss hypergeometric function ,F;(u, 8,y) is defined as [18]

. — ‘o0 (Wn (8)n
ZFI(AU'J 6! )/1 x) - Zn:O (V)n n! xnv

where u and § are real or complex parameters with y & Z.,. Also
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F(u+mn)
)

the generalized hypergeometric function ,F, (al, Ay, v, Ap; by, by, vy by x) is defined by

(Wn = =pu+D@+2)..(u+n-1),

Ay, Az, ., Ap; o [T, (@), 2

F(aa...a'bb...b'x)= F( x): = '

plq 1, U2, » Ypy V1, M2 »Mqo r q b’b,...,b; a .
vz 1 k=0 l_[j=1(bf)k el

Definition 2.4: The Lommel function of the first kind s,,,, can be expressed as follows [19]

P zH*1 F (1_,u—v+3 p+v+3 Zz)
WY 7 (u—v+D(utv+1) 2\ 2 0 2 7 g )

where y,v € Cand Re(u +v + 1) > 0and z € C/(—o0,0].

2.2 Fractional quadratic spline form for the space fractional derivative

Let us write the quadratic spline Q4,,(x, tx) and Q,;(y, t;) in the forms:
Qum(x, ty) = ay(te) + by (t) (x — x) + ey () (x —x)% 1= 1,..,n, (6)
QW tr) = azm(ti) + btV — Ym) + Com (L) (Y — ym)? m = 1,..,5, (7)

where aq;(ty), b1 (tr), c11(tr), Azm(tr), bom (tr) and c,,, (t,) are unknown coefficients, to
derive expression for the coefficients of equations (6)-(7) in terms of S; ,, Si41.m Sim+1s
Fiym Faims Fri41m and Fyp .4, at first we define [20]

Qum(xn i) = Symy Qum(Xi41, tk) = Si1m

Qfm(xl+11 tk) = Fll+1,mv Qfm(xl: tk) = Fll,m1 (8)
Q21Vms ti) = Spmr Q2i(Vm+1, te) = Simeras
0 Imar t) = Fapmsrs Qo i) = Faum )

From equations (6)-(9) and by Caputo fractional derivative we get

1 hE=IT(3 - B)
ay (ty) = Sym » by(ty) = E(Sl+1,m —Sim) — ——  fuam
_ IG-p)
culty) = “n=p F+1m (10)
1 RT3 - B)
Aym (i) = Spm » bam(ty) = E(Sl,m+1 - Sl,m) T 5 famn
ra-8)
CZm(tk) = thl;Fsz‘*l’ (11)

Therefore, by equations (10)-(11) and the continuity conditions Q;,,_;(x;, tx) = Qp (xy, ti)
and Q;_; Vm-1, tx) = Q;(ym, tx), which gives the following relation respectively,
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Fuvvim + Fum = 8(Tham = 2T0m + Tlam),  Where 8 = s (12)
Faums + Faim = ¥ (Tmsr = 2T0m + Tlmot),  Wherey = s (13)
Then, we have

Fiivimer + Fumer = 6(Thamer — 2T mer + T tmes)s (14)
Forvimer + Farvrm = VY(Thamer — 2T am + Tham—1), (15)

2.3 Caputo fractional derivative for the time fractional derivative

To discretize the Caputo time-fractional derivative, we use forward Euler scheme. Let
t.=rAt,r=0,1,...,K, in which t =% is the time step size, then, the Caputo time-
fractional derivative at time point t = ¢;,,, can be approximated, as

tre1
0T (x,¥, tr41) oT3.) )
_ ET‘+1
5 F(l—“)j (trer — $)"ds +
tit1
aT(x v,S5) «
_ ET‘+1
m_a)Zj TP (g = 5) " ds +
j=0¢;
( ) tjt1
Txy, j+1 T(x y:t) a
_ Er+1
F(l — a)z . f (tr41 —S) %ds +
a%T —j
o = ey [T+ T = D+ 52 T (w0 — ) =, T°) + E77, (16)

where u; = (j+ 1) — ()*~* , forall j = 0,...,r

Now, we define the semi discrete fractional differential operator Y (x, y, t,,1) as,

Yo,y try) = m [T7* + T7(uy — D) + X521 T (wigr — ) —u, T, (17)
can be written equation (16) as,

I%T (x,y,tr
% Yo,y tre1) + Er+1 (18)

where ET*1 is truncation error between % and Y% (x,y, t,,+1), also is bounded
|EF*Y] < c1?, (19)

where the constant ¢ dependingon T.
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Theorem [17]: Let T be the exact solution of equation (2) and {T*}X_, be the time discrete
solution of equation (17) with initial condition T° = f;(x,y),x € (0,n),y € (0,s), then, it
holds

IT(t,) — T*|l, < cT*t%7%, k=1,2,..,K (20)
3. Analysis of the method

3.1 Derivation of 2D Pennes’ bioheat transfer equation

The equation (2) of the 2D time-space fractional Penne’s bioheat transfer, can be write as

oPT(xyt) | 9PTCoyt) _ pect 3%T(xyt)  Whep Q _ dm
dx2 T dy? T atx (Ta T) u u
(21)

Using equations (8)-(9) and (17) in the equation (21), gives

_ Pt 1 r—j+1 r—j Wpep QAUm  dm
Fiym + Foym = T4 AOT(2—a) ;=0 uj(Tl,m - Tl,m T (Ta - Tl’:m) T a un
(22)
Now, equation (22) can be written, as
Frum + Foum = ATIRY + BT + AT AT I wy — Au, TS, + CQ + D (23)

Wpcp
U )

— _ Pt — — — _i
where A = T ) ,B=A(u; — 1)+ C "

D=CWyepTa + qm),  Wj = Uy —
from (23) we conclude that

Fll+1,m + F21+1,m = ATlT-l,lm + BTltl-l,m +A Z’f‘% Tr_] Wj - Aurqukl,m + CQ{+1,m + D;

J= l+1,m
(24)
Fll,m+1 + FZl,m+1 = ATlTrtl-ll-l + BTle+1 + A Z}:% T{n_lile- - AurTl(,)m+1 + CQZT:m+1 + Dr
(25)
and
Firrime1 + Fasimer = AT mes + BT amer + AXI20 Tzr+_1],m+1Wj — AU Ty e +
C'Q{,m+1 + D, (26)

now, by adding the equations (23)-(26), we obtain

Fym + Fusim + Fapm + Foymer + Fiomer + Fusimer + Faieim + Faivimer =
A(Tﬁ# + Tlr;i,lm + TlTrJrr_l}u + TlT':I-+1,1m+1) +_B (Tle + T/ 1m +'T1Tm+1 +'T17:|-1,m+1) +
A(Z;:l(TlT_J-Fl _ Tlrr:l] + Tr—]+1 _ Tr—] + Tr—j+1 _ TT—] + Tlr—]+1 Tr—] )Wj _

m , I+1,m I+1,m I m+1 I, m+1 +1m+1 - ti+1,m4+1
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A(Tl?m + qul-l,m + Tl?m+1 + qul-l,m+1) + C(er+1,m+1 + er,m+1 + er+1,m + Ql?:m) + 4D
(27)

by substituting equations (12)-(15) in equation (27), we obtain,

8(Tvsm = 2T + Tham + Thiamst = 2T0mer + Thamer) + ¥ (Tmsr = 2T0m + T +
Thimir = 2T + Thames) = AT+ Tl + Thida & Tiiimes) + B(Tim +
T+ Tt + Thoamen) + AQor (T = T+ T — T 4TI —
Tl'r’;il + Tli_l{:l}rl N Tli—l{mﬂ )Wj — A(T 0 + Tl + Tonrr + Toamsr) + C(Qlsamer +
Qlm+1 + Qliim + er,m) + 4D,

(28)

equation (28) contain of (n — 1) X (s — 1) linear algebraic equations in the (n + 1) X (s +
1) unknowns T/, l=1,.,n—1, m=1,..,s—1, so we need (2n+ 2s) boundary
equation when [,m = 0 and [ = n,m = s can be use Taylor series, these equations are

6(T17jm - Tg,m +h J(l),m + T17jm+1 - Tg,m+1 + th(l),m+1) + V(Tg,m+1 - ZT&m + T(T)ﬂ,m—l +
Time1 = 2T + TTno1) = A(T5 + Tt + Tomka + Tlka) + B(T8m + Tln +

Tomer + Timsr) + A oo(Ti ™ = Tl + T ™ = T, + Tl = To e +

T1r,1:1j;u+11 - T1r,1:1];L1))Wj — A(Tgm + Tlm + Tomer + Tome1) + C(Q7 s + Qs + Q1 +
Qbm) +4D (29)

5(hTr:(1),m - TT’lﬂ,m + T111ﬁ—1,m +h r:(l),m+1 - Ter+1 + Tr,lﬁ—l,m+1) + V(2T7£m+1 - 4T11;m +
2T 1 + BTy man = 20Ty m + BT pyme1) = AT + RTalS  + 2T 0 +
—it1 .
T3 me1) + B(2Tam + Ty m + 2Tnmer + hTj 1y men) + 4 ( 7:0(2an,m“ — 2Ty +
r—j+1 r—j r—j+1 r—j r—j+1 r—j
th(l),m - th(l),m + 2Tn,m+1 - 2Tn,m+1 + th(l),m+1 - th(l),m+1)) wj — A(ZTT(L).m +

hTr?(l),m + 2T mer + hTr?(l),m+1) + C(hQrTz(1),m+1 +2Q7m+1 + hQpiym + 2Qhm) +4D
(30)

§(Tfi10 = Tlo + kT oy + Than — Ty + kT[1y) +¥(Tl = Tlo = kT oy + Tlian —
Tii10 + ler+1,0(1)) = AT + TR + T+ T + B(To + Tliao + Tl + Tiian) +
A(27=0(Tl,ro_j+1 - Tl,ro_ T+ Tzil{(;r - Tl:-_l{O + Tl,r1_j+1 - Tl,r1_ T+ Tl:_1]1+ - l:-_l{l))wf -

(T + Tl + T + Th11) + C(Qfh1q + Qf1 + Qlyro + Qo) + 4D (31)
§(2T 1,5 — AT[s + 2T 16 + KTy 50y — 2kT 0y + KTy 50y) + V(KT [qy — Tl +

Tls—1 + kT i1 50) — Tihas + Tli1s-1) = AQTI + 2T ML + leTsJa) + ler-rTsu)) +
B(2T[s + 2Tf41,6 + kT g1y + kTy1,501)) + A ( §=0(2Tz,rs_j+1 - ZTl,rs_j + ZTl:-—l{:l -

r—j r—j+1 r—j r—j+1 r—j 0 0 0
2Ty g HET sy — kT oy + KTy gy — le+1,s(1))) wj — A(2T + 2T 5 + KTy +

le?l-l,s(l)) + C(ler+1,s(1) + kQZs(l) + 2er+1,s + ZQZ:S) +4D (32)

6(2’1111:5 - ZT(;:S —h g(l),s + ler:S(l) - kT(;;S(l) - hkTg(l),S(l)) + y(kTg,S(l) - T(‘)r:S + T&S—l +
KT{ gy = Tis + Tis—y) = AQRTIE + 2T + kT by + kT 34y) + B(2T{s + 2T +
kTG sy + KT o) + A (B0 (21557 = 25 + 21 % — 21y 4 kemy 3 -
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—7 —7 1 —7
KTosty + KT gty = ler,s(]l))) wj — A(2Tgs + 2105 + kToscry + kTisny) + (2055 +

207 + kQf 51y + kQT 5p)) + 4D,
(33)

6(h T:(l),o - 720 + T-,‘{_l’o + h 7:(1)'1 - 7‘:’1 + T‘I“f—l,l) + '}/(ZT-;‘I + ZTTZO - ZkT;,O(l) +
thZ(1),1 - 4T7€.0 —2h 77;(1),0 +h 77;(1),0 - khT£(1),o(1)) = A(ZT{F + hTrt(Jrﬁ,o + ZTrﬁl +
BTG 1) + B(2T + hThyo + 2T + Ty 1) + A (B0 (210" — 27 +
RTL 0 = BTN o+ 200 = 2y 4+ T = T ) ) wy — A(2TS0 + hTy 0 +
2T 1 + hTpy1) + C(2Qh0 + hQpay0 + 2Q0 1 + hQyy1) +4D,

(34)

§(T{o—Tio +h oo+ i —Toy + th(l)_l) +y(Tg, — Tgo + kT, o) F 11— Tio—
ler:()) =

ATE A+ TI + TI + TIEY) + B(To oy + Ty + To, + TT) + A(Z§=0(T1T5]+1 — T, +
T =T + T =T + T =T ))wy — AT + Ty + Toa + Tiy) +
C(QT1+ Qb1+ QLo+ QF,) + 4D, (35)

5(2hT1:(1),s —2Ths +2Th_ 15 + hkTrf(1),s(1) — kT sy + kTr:—1,s(1)) + V(ZkTg,s(l) -
1
6Tns + 2T 51 + hkTy gy g1y = hTnpys + hT,f(l)’s_l) = A(4T7it + 2hTri5 s + ka;(ll) +
—j+1
RT3 o) + B(4T s + 2Ty o + 2T gy + hKTy ) + A (Zio (4T05 1 =

n
r—j r—j+1 r—j r—j+1 r—j r—j+1 r—j
ATy 4 2T = 2hT )+ 2Ty U5 — 2kT L T = RRTS ) )Wy -
A(4TYs + 2hTyyy s + 2kT g1y + hkTey sc1y) + C(hkQppy.s1) + 2k Q1) + 2hQnc1) s +
4Qn ) + 4D,
(36)
oT . .
where Ty, = £| x=iy=pt=01Ln—-—1nandj=01s—-1,s
. oT _ .
Ti,j(l) = @ x=iy=jpt=01,n—1n andj =0,1,s—1,s

RN

and Tj1y 1) = Frm i=01n-1nandj=0,1,s—1,s.

x:i,yzj )

4. Stability analysis and Truncation Error

The stability of numerical schemes can be using the Von Neumann method. We consider
Tle — S;reialeeiame (37)

where i = +/—1, and & represents the time dependence of the solution and the exponential
represents the spatial dependence. In the exponential [6 and m6 represents the position along
the grid, o and « are the spatial wave numbers, we can rewrite equation (28) as

6(Tl:-1,m - ZTITm + Tlr—l,m + Tlﬁ-l,m+1 - 2Tl?,ﬁm+1 + Tlr—1,m+1) + V(Tlfm+1 - ZTITm + Tle—l +

T T T —
Tl+1,m+1 - 2Tl+1,m + Tl+1,m—1) -
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B(T/m + Tﬁlm + Tlmer + Thamer) + A o =T + T -1

+1,m l+1m

r—j+1 r—j+1
Ty m+1 Tl mr1 T T ime1 Tl+1 m+1))W] +R
(38)

where R = C(Qli1ms1 + Qlmer + Qerm + Q) + 4D, substituting (37) into (38), we
obtain

6(€re(l+1)iaeemia9 _ Zfreliaeemiae + fre(l—l)iaeemiae + S;re(l+1)i098(m+1)ia9 _
Zgreliaee(mel)iaH + Ere(l—l)iaee(m+1)ia9) + y(";reliaee(m+1)ia9 _ Zfreliaeemiae +
frelioee(m—l)iae + Ere(l+1)i09€(m+1)ia9 _ Zfre(l+1)im9€mia9 + S;re(l+1)iaee(m—1)ia9
B(greliaeemiae + Szre(l+1)i06emio:@ _l_E elioe (m+1)ia0 + S; e(l+1)i09 (m+1)ia9) +

r lic ,miaf licO mLaG l+1)ic0 mla@
A(Zj:o(gr—j+1e e - fr—]e + S; e( )
1+1)ic0 ,miab licl ,(m+1)iab 1109 m+1)iaf
fr—je( ) e + fr—j+1e ( ) ér—]e ( ) +

fr_j+le(l+1)i0'9€(m+1)ia9 _ fr_je(l+1)i69€(m+1)ia6))wj-, (39)

one can see that the component R is omitted because the constant value does not affect the
stability of this scheme [21-22].

by divided equation (39) by &,.ei?®ei@m8 \ye have

&6 (—4 sin? 62—9(1 + ei"‘g)) + &y (—4 sin? %9 (1+ ei“9)> =&B(1+e%)(1+e'?) +
A zoGrjar = &r-D(1 +e9?) (1 + e'“%))w;

Now, whenr = 0

&o <6 (—4 sin? 02—9(1 + ei‘w)) —y (4 sinzo;—g(l + ei09)> +(A-B)(1+e“%)(1+

eia@)) — A'Sl(l + eid@)(l + eia@)

It is easily seenthat  |&| < |28+2V+B A| 1o
The absolute value of M% less than one. Therefor, |&]| < |&l

(40)

Now, whenr =1

£,6 (—4 sin? 2 (1 + ei“G)) + &y (—4 sin? 2 (1 + ei“9)> —&B(1+e?)(1 + e®) +
A (51(1 + ei"e)(l + eme)) 1-uy)+A4A (50(1 + eiag)(l + eme)) u =A (52(1 +
eia@)(l + eiae)),

26+ 2y+B—-—A+ Ay,
A

1€1] — uql&ol

&1 <|

but [&1] < 1Sl .
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This led to [&2] < [&4]
(41)

with same way, we get,

26+2y+B -A

1621l = 161 <1&al. (42)

Therefore, from equations (39)-(41) get |&,| < |&,l, hence, this scheme is stable.

& < [P

Now, when the expanding equation (28) with Taylor series in terms of T(x;, y,,, t,) is
obtained:

4
E+l=5 <(2h2D,§ + h—D;‘ + thDyD,% 2XD,D} + - B p2pz + K D 2D +
6
4
K p3p2 + 2 pip + L papz + LK paps 4 -)T[m> +y<(k202 + D)+
--)T{m (k202 + hk2D2D, + D22 + M p2p3 + K p2ps L Ko pa 4

M DD, + papz + L D§D§+ED§D,‘§+~-)T[m>,

3
—A(4+2hD +h2D2 + 2 D3+ _D# + 2kD,, + hkDy D, + 5D, D2 + D, D3 +
3
DD4+k2D2 2D2D+ D2D2+—D D3+—D D4+—D3+

—hD D, +—D 3D2 + D D3+ ™ D D4+ D4+ D4D + e D4D2

Pl ppp: + 2K e M papy + -~-)T”1 —B(4+2hD, + hZDZ +—D3 +—D4 +2kD, +

thD+ DD2+ DD3+ DD4+k2D2+—DD +—DD2

—D D3+—D D4+—D3+—hD D, +—D3D2+ D3D3+ D3D4+
36 144 ~YTX

£ Dt +" pip, + L pap2 + LE pap3 4 RD;D;:+---)Tl_m,

—A( (4+2hD +h2D2 + L D3+ D4+2kD + hkD,D, + XD, D2 +
3 3
~£p, D3+—D D} + k2D2 + —DD +—D D2+—D D3+—D 2D} +5-DF +

—hDD +—DD2+’”‘DD,§+ DD4+ D4+—D4D+ D4D2+
36 Y 1277

X DiD? + XX pipt + )(Tr ]+1—Tr J )uj+A(4+2hD +hZD§+?D,§+

14- 57
2
—D4+2kD +thD +25 DD2+—D D3+—D D4+k2D2 D§Dx+
K3
—D sDi + D D3 += D D4+ D3 +—hD3D +EE D3D2 o DyDi +

4 4 4 4p2 4 4p3 4 4p4 4 ...\ TO
144DD+ D+ pip, + MK papz + 1K paps 4 576Dny+ ) T

—C(4+2hD +h21)2+ D3+ D4+2kD + hkD, D, +%5p,p2 + %5 p D3 +
=5D,D} + k?DZ + DZD + 2 p2pz + X p2p3 4 ?DyD;‘+?D§+
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D D2+—D D3+—D D4+ D4 D4D + D4D2

- D4D4 ) (pec, D% — uD¥® - uDy N + W,,c,,) - 4D, (43)

—hDD+

D4D3 N
57

From equations (20) and (43), the scheme obtained is of O(DE‘“ + D;H” + D;_ﬁ )

5. Numerical Implementations

In this section, we will apply the Caputo fractional derivative and fractional quadratic spline
method for the following two examples of Pennes’ bioheat problem to check the efficiency of
this method. All calculations are implemented with MAPLE software.

Example 1: Consider Pennes’ bioheat equation (2) with the conditions:

T(x,y,0) = (5x3 + y®) cos(1) + 37,

d

—T(i,y,t) = 15i%cos(1 +t%?), ye€ (0,1)
ox i=0,1

d . .

@T(x,], t) = 3j2cos(1 + t?), x € (0,1)

j=0,1
where, by choosing the source function

Q = —28849315.1 t2~%3 ,F,([0.75,1.,1.25],[0.575,.825,1.075, 1.325], —.25 t*) —
14643424.66 t>+%x3 ,F,([1.,1.25,1.75],[1.075,1.325,1.575,1.825], —.25 t*) —
5769863.02 t>~%y* ,F,([0.75,1.,1.25],[0.575,.825,1.075,1.325], —.25 t*) —
2928684.933 t2*%y3 ,F,([1.,1.25,1.75],[1.075,1.325,1.575,1.825], —.25 t*) —
7.744523840 x3~F cost? + 12.06138125 x37# sint? — 1.548904768 y3~F cost? +
2.412276250 y37F sint? + (2000 (5x3 + %)) cos(t? + 1) — 420.

so, the exact solution given as T(x,y,t) = (5x3 + y3) cos(t? + 1) + 37,

T a B L, —error L, —error
1.4 3.6682028e-3 9.0253717e-4

01 1.6 3.6674357e-3 9.0241298e-4

1.8 3.6666368e-3 9.0229499¢e-4

1.4 2.3549982¢e-4 5.7942161e-5

0.001 05 1.6 2.3545522e-4 5.7934941e-5
' 1.8 2.3540877e-4 5.7928081e-5
1.4 3.7954773e-5 9.3374428e-6

09 1.6 3.7951752¢e-5 9.3369537e-6

1.8 3.7948604e-5 9.3364891e-6

1 2 3.1158610e-5 7.6657776e-6

1.4 1.8266272e-3 4.4943014e-4

0.000001 0.1 1.6 1.8262427e-3 4.4936790e-4
1.8 1.8258423e-3 4.4930877e-4

05 1.4 6.7008060e-6 1.6486912¢-6

' 1.6 6.6993956€e-6 1.6484628e-6
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1.8

1.4
09 1.6

1.8
1 2

6.6979267e-6
2.8660189%-8
2.8654161e-8
2.8647884¢e-8
7.5797332e-9

The Numerical Solutions of 2D ...

1.6482459¢-6
7.0516583e-9
7.0506824e-9
7.0497554e-9
1.8654321e-9

Table 1: The L, and maximum norm errors of Numerical Solutions for Various Values of for
Example 1at @ = 0.1,0.5,0.9,1and 8 = 1.1,1.5,1.9,2

T(X,Y,1)

40.5
40
39.5
39
38.5
38
37.5
37
36.5
36
35.5
35

Fig. 1: Exact Solutions for Examplel
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T(X,Y,1)

Fig. 2: Numerical Solutions for Examplel at @« = 0.1, § = 1.4,and 7 = 0.001

40.5

40

39.5

39

38.5

38

37.5

37

36.5

36

355

35

0 01
1 02
0.3 0.4 0.5 06 07
5108 g9

X

0.9

0.6

0.3

0
1

Example 2: Consider Pennes’ bioheat equation (2) with the conditions:

T(x,y,0) = x3+% 4 y3+@ 4 37,

d
x (i, y,t)

dy

i=0,1

= (3 + a) i**9,

y € (0,1)

9
o t)| - B+ xe(01)
j=0,1

where, by choosing the source function

Q = 8970483.264 t1+F~* —3.109419701 ( x3+*7F + y3+a=F) + 2000(x3+* + y3+@ +

t1*F) — 420.

so, the exact solution given as T'(x, t) = x3+% + y3+@ 4 ¢1+6 4 37,

B T

L, —error

L, —error

0.9

0.000001
0.001
0.01
0.1
0.000001
0.001
0.01
0.1
0.000001
0.001
0.01
0.1

1.1

1.5

1.9

1.5475640e-8
2.2616972e-6
1.6396255e-5
1.2822234e-3
1.5464677e-8
2.2603941e-6
1.6385905e-5
1.2822176e-3
1.5449100e-8
2.2586844¢-6
1.6372324e-5
1.2822138e-3

4.5166604e-9
7.7413749¢-6
5.1455543e-5
1.3522203e-2
4.5140604e-9
7.7358842¢-6
5.1416479e-5
1.3522507e-2
4.5106490e-9
7.7280838e-6
5.1362675e-5
1.3522980e-2
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Table 2: The L, and maximum norm errors of Numerical Solutions for Example 2 and
Various Valuesof « = 09,8 =1.1,1.5,1.9and T = 0.001,0.01, 0.1

39.5
39
38.5

38

T(X,Y,1)

37.5

37

36.5

36

39.5
39
38.5
38
37.5

T(X,Y,1)

37
36.5
36
355

Fig. 4: Numerical Solutions for Example2ata = 0.9, f =1.9,and t = 0.001 s

Discussion and Conclusions

The objective of this article is to compare the achievement of the model approach based on
fractional quadratic spline method, which has been considered for finding the numerical
solutions of 2D time-space Pennes' bioheat problem through using Caputo fractional
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derivative for the fractional time derivative and fractional quadratic spline for the fractional
derivative of space in this equation. Generally speaking, it can be concluded from L, and
maximum norm errors of the numerical approximations, which tabulated in Tables 1, 2 and
shown in figures 1, 2, 3, 4 compared with the accurate solution, that the proposed method is
powerful, effective, highly accurate and needs little recurrence. Furthermore, the present
algorithm is simply applicable as well as the results clarify the activity of the suggested
method. The analysis of stability using the Von Neumann of this method has been discussed
to clarify that this scheme unconditionally stable and, it can be seen that the numerical

solution converges to the exact solution with order O(727% + h*=F + k*7F).
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