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Abstract

In this paper, a cubic B-spline method is applied to solve singularly perturbed differential
difference equations with delay as well as advances whose solution exhibits boundary player
behavior. Error analysis of the submitted method was discussed. We tested the method with
three numerical examples found the presented method can be applicable and accurate.

Keywords: Singular perturbation problems, a cubic B-spline method, error analysis, exact
solution.

1.  Introduction
In this paper, we consider the following singularly perturbed differential-difference
(SPDDE) [1-8]:

gy" () +a(x)y'(x)+a,(x)y(x=86) +a,(x) y(x) +a,(x) y(x+7) = f (x), @)
V x € (0,1) and subject to the interval and boundary conditions

y(x)=¢(x), on —6<x<0 )

y(x)=y(x), on 1<x<1+n 3)

Where a,(x),a,(x),a,(x),a,(x), f(X),#(x) and y(x) are bounded and continuously
differentiable functions on(0,1), ¢is the singular perturbation parameter (0<¢&<<1),s8
and 77 are the delay and the advance parameters respectively (0< 6 =0(¢);0<n =0(¢)).

These equations are widespread in many branches of sciences and engineering and have been
used for many years in control theory, description of the so-called human pupil-light reflex
and evolutionary biology [9-10]. The arguments for small delay problems are found
throughout the literature on epidemics and population where these small shifts play an
important role in the modeling of various real life phenomena [11]. There is research dealing
with the solution of these equations numerically, for example the mixed finite difference
method[19], numerical integration method [10], a domain decomposition method[3],
presented a fitted approach[1].

By using Taylor series expansion in the neighborhood of the point X, we have

y(x=0) = y(x)—oY'(X), (4)
y(x+7) = y(X)+ny'(X), (5)
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by substituting Egs. (4) and (5) into Eqg. (1), we get an asymptotically equivalent singular
perturbation problem of the form:

£y"(x)+ p(x)y'(x) +a(x) y(x) = f (x), (6)
with boundary conditions
y(0)=¢(0) =, (7
y@) =r@) =, (8)
where
p(x) =a,(x)+a,(X)7—-a,(x)d, )
q(x) = a,(x) +a,(x) +a,(x). (10)

Since0< o <<1 and0 <7 <<1, the transition from Eq. (1) to Eg. (6) is admitted ([1] and [4])
and the solution of Eq. (6) will provide a good approximation to the solution of Eq. (1).

2. Cubic B-spline method
In this section we use the cubic B-spline collocation method to compute the approximate
solution of Egs. (1)—(3). It can be written as a linear combination of cubic B-splines basis
functions[2], [12-13].
Consider equally spaced knots of a partition A, :a=X, <X <X, <..<X, =b on [a,b],

: : b-a . . : .
with mesh sizeh = 0 Let 83 (Ap) be the space of cubic spline functions over the partition

A, . The B-splines of degree zero are defined by

B (x) = {1 if x <xX<X,,
i - -
0 otherwise, (11)
and those of degree kK € Z"are defined recursively in terms of B-splines of degree k —1 by
X—X: _ X g — X _
Bik (X) = : Bik Hx) 4| Bilill(x)' (12)
Xik =% ik~ Xin

For i=0,%1,+2,... [14-15]. The basis functions B/ which defined by (12) are called B-

splines of degreek . Applies recurrence relation (12) and assuming the partition A, the non-
uniform B-splines up to degree 3 are given by[16-18] :
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(X=X )3 .
if X SX<X g
(543 =) 0G,2 = %), %)
()00 o)X X)
(443 0052 )02 =% 533 705,375,002 = X40)
) (X—x )2
+ (g =00 i3) if X SX<X o
3 (Xi+4 B Xi+1)(xi+3 B Xi+1)(xi+2 B Xi+1)
B (0 = (= %)04,3 -0 04— X )05 -X)
(Xi+3 =% )(Xi+3 - Xi+1)(xi+3 B Xi+1) (Xi+4 B Xi+1)(xi+3 B Xi+1)(xi+3 B Xi+2)
) 2(x—x.
+ (g =070 %19) if X p SX<X o
(Xi+4 _Xi+1)(xi+4_Xi+2)(xi+3_xi+2) " "
03
(4% if X3 SX<Xi 4
(g = %0054 = %42) X544~ %i43)
0 o.w
We apply this recursion to get the cubic B-spline, it is defined as follows:
(X_Xi—2)3 if X o <X<X4
3(x=x% )3 +3n(x=x% )2+3n%(x—x )+h3 if x . <x<x
3 1 i—1 -1 -1 i—1 I
BIOO=Gm1 -804, 03 +30(x .1 —07 +3n%(x_; —x)+h3 if x<x<x
3 .
(xi+2—x) if Xig SX<Xi o
0 if otherwise

(13)
The numerical treatment for solving (1)—(3) using the collocation method with cubic B-spline
is to find an approximate solution Y (X) for the exact solution Y(X) in the form

Y(x)="5 6B (%) (14)

where C, is unknown real coefficient and B, (X) are cubic B-spline functions which defined
in Eq.(13).

It is require that Eq. ( 14 ) satisfies our boundary value problem (BVP) (6-8 ) at X = X where
X, is an interior point. That is

eY"(%)+p)Y'(x)+a(x)Y (x) = f(x), (15)

and the boundary conditions are

Y (X,)=«a for X, =a,
Y(x,)=p forx =D,
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from Eqg. (14), we have
Y (XI) = Ci—lBi—l(Xi) + Ci Bi (XI) + Ci+1Bi+l(Xi) + Ci+2 Bi+2(Xi)7

Y'(x)=c.,B,(x)+cB/(x)+C.,B (%) +C.,B (%), (16)
Y ”(Xi) = Ci—lBllil(Xi ) +G Bnﬂ(xu) +C B”:I.(Xi) +Q+2B|’iz (Xu)’

1+ 1+

and these yield

Ca[eB7 (%) + p(%) B (%) +a(%) B, (%)]
+C[eB(%) + p(%)B/(%) +a(%)B; (%)]

+C,,[€B/1 (%) + P(6) B/ (%) +a(X) By, (X)]
+C;,o[€B7 () + POG) B, () +a(%) By, ()] = f (%)

The values of successive derivatives B®(x), i=—10,...,n+1; r=0,1,2 at nodes, are
listed in Table 1.

Table 1: Coefficients of cubic B-spline and its derivative at nodes X; .

Xi1 X X else
B,(X) 1 2 1 0
6 3 6
BO(x) 1 0 1 0
2h 2h
B (x) 1 _2 1 0
h2 h2 h2

If we combine the values of Table 1 and Eq. (16), we obtain

¢._4[65-3p(x;)h+a(x)h*]+ ¢ [-12¢ + 4q(x)h?]

2 2 (17)
+ci+1[65+3p(xi)h +0(X;)h"] =6h"f (x;).
Now we apply the boundary conditions:
Y (Xo) = C—lB—l(XO) +CoBy (Xo) + ClBl(XO) +C,B, (Xo) =Q, 8)

Y (Xn) = Cn—an—l(Xn) + Cn Bn (Xn) + Cn+1Bn+l(Xn) + Cn+2 Bn+2 (Xn) = IB’

where the value of B, (X) at X=X, and X = X, are given
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1

B—l(XO) = 6 = Bn—l(xn)’

4
B, (X,) = E =B, (X,),

1
Bl(XO) = g = Bn+1(xn)'
Bz (Xo) =0= Bn+2(xn)’
(19)
therefore,

c_1+4c0 +C =6q,

c.,+4c +c. ., =65,

(20)

(21)

coupling Egs. (17)- (21) lead to a system of (N+1) linear equations AY = B inthe (n+1)

unknowns, where
T
Y =[c,,C,..C, ;,C.],

B = 6wy, h* f (x),h* f (%,),.. h* F (x,0) W, T,

and the coefficient matrix A given by

where &;,b,,and g; are define below

O
a, b

0Oa b r, -

9,

a, = 6s—-3p(x)h+q(x)h?,

b = —12¢ +4r(x)h?,

I, =65 +3p(x)h+q(x)h’

00
L 0
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9, =D, —4a,,
g; =l — &,
g;=4a,—-1I,,
g,=b,—4r,

w, = h*f (x,) —aa,,
2
w. =h"f(x,)-pr,
since Ais a non-singular matrix, so can solve the system AY =B forC,,C;,...C, ;,C

*¥n-17'"n
substituting these values in Eq. (14), to get the required approximate solution.
3. Error Analysis

By substituting the blending function of Table 1 into Eq. (16), we have

Y(x)= %Ci—l +§Ci +%Ci+1 ~ y(X), (22a)
Y () = =Gy 2y = Y (X) (225)
1 2h 1—. 2h 1+ 1
" 1 1 "
Y'(x) :FCH _Fci "’ch =~ y"(X), (22¢)

then, the following relationships can be obtain:

TIY 00 +4Y )+ ()] =S [Y (%)Y (6. (232)
h2Y"(%) = 6[Y (%) —Y ()]~ 2h[2Y (%) +Y (x.,)]. (23b)
now, define E(Y (x;)) =Y (X,,), EQ. (23a) can be written as[ 6 ]

h -1 ' 1 -1

E[E +4+EJY (xi)=E[E—E Jy(xi). (24)

Morever, we have

EY () =Y (x+h)=3 M) :{i (hi[!))i }Y(X) —e™Y (x), where D = di

i=0 I i=0 X

Itimplies that E =€ . Similarly, we have

E71 — eth Em — eth E—m — efth

can be write in the expansion form of powers hD . Therefore, the above Eq. (24) can be
expresses as [14 ].

{1+1[(hD)2 + (D)’ + (nD)" +...ﬂY’(xi) =(D+ hD" + h'D" + h"D' +j y(X%),
3L 2! 41 6! 3! 51 7!

and, it can be simplify
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h’D® h*D®> h®D’
(D+ + + +]
3! 51 7!

Y’(Xi) =7 2 4 5 y(Xi)v
1+((hD) +(hD) +(hD) +H
i 6 72 2160
213 45 67
Y'(x) = D+h D +h D +hD +]
3! 51! 7!

{l((hD)z , (hD)* _ (hD)° +"'j+((hD)2 . (hD)*  (hD)’ +J +--1y(><.)
6 72 2160 6 72 2160

:[D+ h"D” + h'D® + h°D’ +...J(1— (D)’ + (hD)* — (hD)" —] y(x)

3! 51 71 6 72 2160
h*D® h°D’
=|D- + - X:),
[ 180 1512 jy( )

hence,

Y'(x)=y'(x h*y® (x)+0(h®
(0=~ 195 |y (x)-0)

By using the same approach for Eq. (23b), we can derive

Y7(x) = y(5) - (2}12 ® (x )+[360jh4 (%) +O(h°).

4. Numerical Examples
The exact solution of singularly perturbed differential-difference equation:[10]

ey"(x)+a,(x)y'(x) +a,(X) y(x—6) +a,(x) y(X) +a,(x) y(x+77) = f (%),
O<x<l
under the boundary conditions

y(X) =¢(x), on —y <x<0,
y(x)=y(x), on 1<x<l+p,
with constant coefficients is given by

y(x) = cleml +Cye 2 +i

C
[-f+7rcg +e 2(f - ¢03)]
[(eml—e 2)c,]

Cl_

[-f+7rcy +eml(f —¢c3)]
(e t-¢ 2)c,]

C2:
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[-(a,-a,6+am)+ \/(31 ~8,6 +a,7)" - 45C3
m, = > ,
&

[-(a,-a,6+am)- \/(31 ~a,6 +a,7)" - 45C3
m, = > ,
&

c=(a,+a,+a,),

we now consider three numerical examples to illustrate the comparative performance of our
method. All calculations are implemented by Maple. In Examples 1, 2 and 4, we applied the
scheme to solve these problems for different values of and compared with exact solution in

Figures 1, 2 and 3 respectively.
Moreover, we computed solutions at grid point, the observed maximum absolute errors

L = max\yi —Y(Xi)‘) where Y, is numerical solution and y (X;) is exact solution are

tabulated in Tables 2,3 and 4 (for £=10",10" ) compared our result with the results given in
domain decomposition method [3] and mixed finite difference method [19]. This shows that our
results are more accurate.

Example 1: Consider the singularly perturbed differential difference equation with left end
boundary layer: [3] and [19]

gy"(X)+Y'(X)+2y(x—5)-3y(x) =0
Yi(X)=1L-5<x<0, y(X)=L1<x<1+7.

0.9 /

0.6 /

0.5
/
/ Numerical == = =

Exact  cewmmm

04 / ~

0 02 04 _ 06 0.8 i

Figure 1: Comparison the exact and numerical solution (¢ =10 and §=0.1¢ =7 ) for

Example 1.
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“T /
D.QJ //
/
0.8 /
y{x) ' /
_ n-.?.-l /
l e
0.6 /
L
N Numenal — — =
U-.J-—L //

0 02 04 . 0% 08 1

Figure 2: Comparison the exact and numerical solution (¢ =10~ and & =0.1¢ =7) for

Example 1.

Table 2: Comparison of the maximum absolute errors of cubic B- spline method of Example
1 with the maximum absolute errors of [3] and [19].

=107, §=0.1¢ £=10" 6=0.1¢
X | CubicB- | [3] [19] Cubic B- [ [3] [19]
Spline Spline
0.1 |2.30E-8 | 3.694E-4 |3.694E-4 | 5.2 E-9 5.89661 E-5 | 1.E-6
0.2 |2.28E-8 | 4.127E-4 | 4.127E-4 | 46 E-9 5.7782E-5 | 3.E-6
0.4 |2.70E-8 | 5.152E-4 | 5.152E-4 | 4.4 E-9 5.29203E-5 | 1.E-6

06 |7.8E-9 6.428 E-4 | 6.429E-4 | 1.25 E-8 430033 E-5 | 3.E-6

0.8 | 3.67E-8 8.017 E-4 | 8.017E-4 | 1.215E-7 | 2.62473 E-5 | 6.E-6

09 |227E-8 8.956 E-4 | 8.956E-3 | 8.09 E-8 1.44433 E-5 | 4.E-6

Example 2 : Consider the singularly perturbed differential difference equation with left end
boundary layer: :[3]and[19]

gy"(X)+y'(x)-3y(x) +2y(x+17) =0

y(X)=1,-0<x<0, y(x)=1,1<x<1+n.
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1.0 l /
D.S‘—I //
o.s-' //
o /
¥ix)
o.?-l //
| /
o.s-l P4
D.j—| ///
P g Bact immn
0.4-L/

0 02 04, 0% 08 1

Figure 3: Comparison the exact and numerical solution (¢ =10 and §=0.1¢ =7 ) for

Example 2.
1.0
l /
D.S‘—l //
/
0.8 /
¥i®) i /
o.?-l /
l e
0.6 /
L
0.54 / E——
/ Exact  cnmmam
24y //

Figure 4: Comparison the exact and numerical solution (¢ =10~ and & =0.1¢ =7) for

Example 2.

Table 3: Comparison the maximum absolute errors of Example 2 with the maximum
absolute errors of [3]and[19].

£=107, 5=0.1¢ £=10", 5=01¢
X ["CubicB- | [3] [19] Cubic B- | [3] [19]
Spline Spline
0.1 |488E8 |4962E-4 |49E-5 |9.7E-9 |4962E-4 | 0.6E5
0.2 |48E-8 |4988E4 |53E5 |104E-8 | 4988E-4 | L9E-5
0.4 |2.76E-8 |4464E-4 |62E5 |74E-Q9 |4464E-4 | 1L.OE-5
0.6 |467/E-8 |3614E-4 |0.73E-4 |2.20E-8 |314E-4 |17E-5
0.8 | 1.263E-7 | 2172 E-4 | 0.85E-4 | 1.008E-7 | 2.172 E-4 | 1.9E-5
0.0 | L182E-7 | 1.207E-4 |92E5 |6.57E-8 |1207E-4 | 15E-5

271




Basrah Journal of Science

Vol.37(2), 262-275,2019

Example 3 :Consider the singularly perturbed differential difference equation with left end

boundary layer: [3] and [19]

ey"(X)+y'(x)—2y(x—06)-5y(x) + y(x+77) =0
y(X)=1,-0<x<0, y(xX)=1,1<x<1+n.

¥®

1.0

0.5

0.3

0.7

0.6

0.4

0.1

l Numerical = = =
Exact

rd

0 02 04

16

08

{

Figure 5: Comparison the exact and numerical solution (¢ =10 and 6 =0.1¢ =n ) for

Example 3.

0.4

0.39

0.2

0.14

i
| [ ==~ l!
!
!
/
/
7/
/
-
b =™
0 02 04 06 03 1

Figure 6: Comparison the exact and numerical solution (¢ =10™ and 6 =0.1¢ =n) for

Example 3.
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Table 4 :Comparison the maximum absolute errors of Example 3 with the maximum

absolute errors of [3] and [19].

£=1073, 6=0.1¢ £=10", 6=0.1¢
X ['Cubic B- [ [3] [19] Cubic B- [ [3] [19]
Spline Spline
01 |7.4E-11 |2.13E-5 6.8 E-6 1.417E-9 | 4.3E-6 | 1.346461 E-6
0.2 | 1.46E-10 | 4.27 E-4 143E-5 [2259E-9 | 6.9E-6 | 1.9593 E-6
04 |40E-10 |[1351E-4 |274E-4 |6.68E-9 1.78 E-5 | 571252 E-6
06 |2.3E-10 |4.804E-4 |7.82E-5 |7.10E-9 410E-5 | 1.63443 E-5
0.8 | 1.04E-8 |1.6990E-2 |2.185E-3 |2.7E-9 7.69 E-5 | 4.5098E-4
09 |297E-8 [3.0291E-3 |2.006E-3 | 6.15E-8 2.E-7 7.371E-5

5. Conclusion

The cubic B-spline method is developed for the approximate solution of singularly perturbed
delay differential equations of second order with left and right boundary in this paper. The
approximation errors are discussed. Three examples are considered for numerical illustration
of the method. Numerical result are presented in Figure (1, 2, 3, 4, 5 and 6) with

£=10710" and compared with the exact solutions, as for the Tables (2, 3 and 4) we

compared the numerical solution with other methods. The numerical results obtained indicate
that the proposed method has high accuracy, which makes it very encouraging to deal with
solving this type of problems.
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