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Abstract 

In this paper the numerical study for incompressible power-low inelastic fluid is presented. 

Physically, a continuity equation (mass conservation) and time-dependent conservation of 

momentum equations are utilized to describe the motion of the fluid. Moreover, the flow problem 

is solved under viscous inelastic assumptions, with a power-law inelastic model (𝑃𝐿𝐼𝑀) . 

Numerically, the study has been conducted based on the Galerkin finite element method (𝐺𝐹𝐸𝑀). 

Attention is paid to the comparison between Newtonian results and shear-thinning inelastic. 

The analysis of convergence under the parameters of power-low inelastic model and Reynolds 

number is conducted. The Findings reveal that, there is a significant effect from the inelastic 

parameters upon the the velocity temporal convergence-rates of velocity, while for pressue, the 

change in convergence is modest. 
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1 Introduction 

In this study , a numereical analysis of inelastic ( general Newtonian ) fluid is performed with a 

Galerkin finit element (𝐺𝐹𝐸𝑀) algorithm. Here, the general Newtonian fluid is usually governed 

by two differential equations; named conservation of mass and time-dependent conservation of 

momentum. These equation are elliptic partial differential equations and presented in this 

investigation in cylindrical coordinate system (Axisymmetric flow) (for more detials see [1]). 

Particularly, a general Newtonian fluid plays an important role in various industries, where many 

industrial processes involve this type of fluid. In this type of fluid the shear stress is defined as a 

non-linear function of shear rate at the particular time. So, we need to add a constitutive equation 

to treat the non-linearity behaviour of shear stress. For that purpose, power law shear-thinning 

(pseudo-plastic), shear thickness model is implemented as a well presented model for simulating 

this type of fluid. A power-law model is originally proposed by De Waele-Ostwald [2]. Also in 

1929, Norton introduced a one-dimensional case of the power law [3]. In 1954, Hoff [4] proposed 

the power law in the three-dimensional version, and this model is named the Norton-Hoff one. 

This kind of model describes the shear stress as a function of a second invariant of rate of 

deformation tensor. Since this model contains two parameters only, thus one can say that this 

model is the easiest time-independent non Newtonian model [5]. Here, The (𝑃𝐿𝐼𝑀) is defined as 

([6] , [7])  

 𝜏 = (𝑘|�̇�|𝑛−1)�̇�, 

where, �̇� is the shear rate for simple shear flow, 𝑘 is a consistency parameter and 𝑛 is a power-

law index. Approximately, this viscosity model describes the behavior of a real non-Newtonian 

fluid. In the case of that (𝑛 < 1), the (𝑃𝐿𝐼𝑀) gives that the viscosity decreases as the shear rate 

increases, , which is called shear thinning liquid (more detials in sections 3 and 4 below). This case 

requires a fluid with infinite viscosity at rest and zero viscosity as the shear rate approaches 

infinity, but a real fluid has both a minimum and a maximum effective viscosity that depend on 

the physical chemistry at the molecular level. Therefore, the (𝑃𝐿𝐼𝑀) is only a good description of 

fluid behavior across the range of shear rates to which the coefficients were fitted. There are a 

number of other models that better describe the entire flow behavior of shear-dependent fluids, but 

they do so at the expense of simplicity, so the power law is still used to describe fluid behavior, 

permit mathematical predictions, and correlate experimental data. 

Particularly, many studies have been done by using (𝑃𝐿𝐼𝑀). Garrioch and James [8] implemented 
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a numerical study for Newtonian and power-law shear-thinning fluids in high-speed, laminar flow 

through a conical channel. In this study, the study emphasized on the pressure drop of creeping 

Newtonian and Non-Newtonian flows in a cone. Missirlis et al. [9] studied the steady motion of 

spheres representing particles inside tubes filled with different fluids using both a finite-element 

and a finite-volume method. There, the rheology of the fluids has been modelled by the power-law 

able to describe the shear-thinning (pseudoplastic) behaviour of a series of polymer solutions. 

Numerical simulation based on finite element method for general Newtonian has been conducted 

by Mitsoulis and Kotsos [10]. In this study, the Herschel-Bulkley constitutive model is 

implemented, which reduces to the Newtonian, power-law and Bingham, models. Belblidia et al. 

[2] used a Taylor-Galerkin/pressure-correction to address the inelastic die-swell flows under two 

assumptions ; incompressible and compressible presentation. Wahba [11] used the power-law 

model to investigate shear-thinning and shear-thickening effects of fluid on the transient flow 

behavior. 

Numerically, Galerkin finite element approach is implemented to solve the governing equations 

of incompressible general Newtonian flow in cylindrical coordinates [12]. Our previous studies 

have mostly focused primarily on the steady state flow of Newtonian fluids through straight 

channel, and have not investigated how general Newtonian features influence flow behavior (see 

[1]).  

The present study aims to present a study on the incompressible power-low inelastic fluid with a 

viscosity dependent on simple shear-rate. The novelty here is to study the temporal convergence-

rate of the system solution that is taken to be steady state, incompressible, axisymmetric, and 

laminar, which did not address by researchers previously. In this context, Poiseuille(Ps) flow along 

a two dimensional planar straight channel, under isothermal condition is studied. The main results 

of current study focused on the convergence rate of velocity and pressure solutions under the 

variation of power low parameters and Reynolds number presented. Furthermore, determination 

of the critical levels of Reynolds number (Re) is also reoresented the excited issue of this study. 

Numerical treatments are presented for governing system, where we are utilzed the Galerkin finite 

element method (GFEM).   

2  Mathematical modelling 

For inelastic (non-Newtonian) constitutive modelling, the extra stress tensor may be reforested as  

 𝑇 = 2𝜇(�̇�, 𝜀̇)𝑑, (1) 
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where, �̇� , 𝜀̇  represent shear-rate and strain-rate for simple shear flow and extensional flow, 

respectively, and 𝑑 is the deformation rate of the fluid, such that  

 �̇� = 2√𝐼𝐼𝑑 , (2) 

  

 𝜀̇ = 3
𝐼𝐼𝐼𝑑

𝐼𝐼𝑑
, (3) 

  

 𝑑 =
1

2
(∇𝑢 + ∇𝑢𝑇). (4) 

Here, 𝐼𝐼𝑑 and 𝐼𝐼𝐼𝑑 represent the second and third invariants of the rate of strain tensor 𝑑 which, 

in axisymmetric coordinate system can be defined as ( see [5])  

 𝐼𝐼𝑑 =
1

2
𝑡𝑟(𝑑2) =

1

2
{(

𝜕𝑢𝑟

𝜕𝑟
)2 + (

𝜕𝑢𝑧

𝜕𝑧
)2 + (

𝑢𝑟

𝑟
)2 +

1

2
(
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
)2}, (5) 

and  

 𝐼𝐼𝐼𝑑 = 𝑑𝑒𝑡(𝑑) =
𝑢𝑟

𝑟
{
𝜕𝑢𝑟

𝜕𝑟

𝜕𝑢𝑧

𝜕𝑧
−

1

4
(
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
)2}. (6) 

Hence, for incompressible inelastic fluid flows under an isothermal setting, the governing 

equations may be expressed as:  

 ∇ ⋅ 𝑢 = 0, (7) 

 𝜌
𝜕𝑢

𝜕𝑡
= ∇ ⋅ (2𝜇(�̇�, 𝜀̇)𝑑) − 𝜌(𝑢 ⋅ ∇𝑢) − ∇𝑝. (8) 

Here, for inelastic fluids the viscosity is a function of combined shear-rate and extension–rate. 

Also, 𝑝  is the pressure and 𝜌  is the density of the fluid . In the cylindrical coordinates the 

continuity equation for conservation of mass and time-dependent conservation of momentum 

equation are expressed as:  

 
𝜕𝑢𝑟

𝜕𝑟
+

1

𝑟
𝑢𝑟 +

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝜕𝑢𝑧

𝜕𝑧
= 0. (9) 

 𝑟-direction  

 
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝜃(

1

𝑟

𝑢𝑟

𝜕𝜃
−

1

𝑟
𝑢𝜃) + 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
=

−1

𝜌

𝜕𝑝

𝜕𝑟
+

2𝜇𝑠

𝜌

𝜕2𝑢𝑟

𝜕𝑟2  

 +
𝜇𝑠

𝜌𝑟2

𝜕2𝑢𝑟

𝜕𝜃2 −
𝜇𝑠

𝜌𝑟2

𝜕𝑢𝜃

𝜕𝜃
+

2𝜇𝑠

𝜌𝑟

𝜕𝑢𝑟

𝜕𝑟
+

𝜇𝑠

𝜌𝑟

𝜕2𝑢𝜃

𝜕𝜃𝜕𝑟
+

𝜇𝑠

𝜌

𝜕2𝑢𝑟

𝜕𝑧2 +
𝜇𝑠

𝜌

𝜕2𝑢𝑧

𝜕𝑧𝜕𝑟
. (10) 

 𝜃-direction  

 
𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
+ 𝑢𝜃(

1

𝑟
𝑢𝑟 +

𝜕𝑢𝜃

𝜕𝜃
) + 𝑢𝑧

𝜕𝑢𝜃

𝜕𝑧
=

−1

𝜌𝑟

𝜕𝑝

𝜕𝜃
+

2𝜇𝑠

𝜌𝑟2

𝜕𝑢𝑟

𝜕𝜃
 

 +
2𝜇𝑠

𝜌𝑟2

𝜕2𝑢𝜃

𝜕𝜃2
+

𝜇𝑠

𝜌

𝜕2𝑢𝜃

𝜕𝑟2
+

𝜇𝑠

𝜌𝑟

𝜕2𝑢𝑟

𝜕𝑟𝜕𝜃
+

𝜇𝑠

𝜌

𝜕2𝑢𝜃

𝜕𝑧2
+

𝜇𝑠

𝜌𝑟

𝜕2𝑢𝑧

𝜕𝑧𝜕𝜃
. (11) 



Basrah Journal of Science                         Vol., 37 (2), 163-180, 2019 

167 
 

 

 𝑧-direction  

 
𝜕𝑢𝑧

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
+ 𝑢𝜃

1

𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
=

−1

𝜌

𝜕𝑝

𝜕𝑧
+

2𝜇𝑠

𝜌

𝜕2𝑢𝑧

𝜕𝑧2
 

 +
𝜇𝑠

𝜌

𝜕2𝑢𝑧

𝜕𝑟2 +
𝜇𝑠

𝜌𝑟

𝜕𝑢𝑟

𝜕𝑧
+

𝜇𝑠

𝜌𝑟

𝜕𝑢𝑧

𝜕𝑟
+

𝜇𝑠

𝜌

𝜕2𝑢𝑟

𝜕𝑟𝜕𝑧
+

𝜇𝑠

𝜌𝑟2

𝜕2𝑢𝑧

𝜕𝜃2 +
𝜇𝑠

𝜌𝑟

𝜕2𝑢𝜃

𝜕𝜃𝜕𝑧
. (12) 

In contrast, the momentum equation (8) can be also defined by the non-dimensional groups of 

Reynolds number (𝑅𝑒), which is defined by the scales of velocity (𝑈), length (𝐿) and density (𝜌) 

(for more details see ([12]-[15])). Thus, in this case the non-dimensional momentum equation for 

general Newtonian can be written as  

 𝑅𝑒
𝜕𝑢

𝜕𝑡
= ∇ ⋅ (2𝜇(�̇�, 𝜀̇)𝑑) − 𝑅𝑒(𝑢 ⋅ ∇𝑢) − ∇𝑝. (13) 

  

3  Material modelling considerations 

For non-Newtonian fluids, there are many possible inelastic constitutive models to consider. Some 

of these models describe shear viscous stress response and the others present extensional response. 

In addition, many materials are non-Newtonian, and exhibit either shear-thinning or shear-

thickening behaviour. 

The most fundamental constitutive model is that which describes shear viscous stress response of 

power-law form, which describes shear-thinning or shear-thickening behaviour. Fluids of this type, 

originally proposed by Ostwald-de Waele, may be expressed as:  

 𝜏 = (𝑘|�̇�|𝑛−1)�̇�, (14) 

where 𝑘 is a consistency parameter and 𝑛 is a power-law index. Then, higher 𝑘-values are found 

to exhibit more viscous fluid characteristics. When 𝑛 = 1, the Newtonian limiting approximation 

is recovered, with no shear-rate dependence; shear thinning is gathered for 𝑛 < 1 (as applied in 

this task) and shear-thickening is observed for 𝑛 > 1.  

 

4  The material functions of power low model  

In this section the behaviour of the (𝑃𝐿𝐼𝑀) is presented to see the effect of 𝑛- variation and 𝑘- 

variation.  The Newtonian and inelastic material functions are considered in Figure 1. In this 

Figure the viscosity is presented as a function of the shear rate (�̇�), with 𝑘 = 1 and n- variation. 

The constitutive model that describes shear viscous stress response of power-law form, which 
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describes shear-thinning or shear-thickening behaviour (see eq (14)). In this model 𝑘  is a 

consistency parameter and 𝑛  is a power-law index. Here one can see that, when 𝑛 = 1, the 

Newtonian limiting approximation is recovered, with no shear-rate dependence; shear thinning is 

gathered for 𝑛 < 1 and shear-thickening is observed for 𝑛 > 1 (see Figure 1).  

 
 

 

   Figure  1: Material functions, Newtonian vs Inelastic, 𝑛-variation, 𝑘 = 1. 
 

Moreover, to see the behaviour of the model when the level of 𝑘 is varied, the viscosity is plotted 

as a function of the shear rate for that sense (see Figure 2). The Figure shown that, higher 𝑘-values 

are found to exhibit more viscous fluid characteristics.  
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     Figure  2: Material functions, Newtonian vs Inelastic, 𝑘-variation, 𝑛 = 0.8.   

5  Numerical method 

The Calerkin finite element method is proposed to solve the system of equation (9)-(12). The main 

concept of this method is to find the weak form of the equation by using appropriate weight 

functions 𝑊  and 𝑄  , such that the first function 𝑊  for momentum equation and the second 

function 𝑄  for continuity equation. In addition, three quadratic shape functions of velocity 

components in cylindrical coordinates are utilized. These functions are given in natural coordinates 

as:  

 

[
 
 
 
 
 
𝜓1

𝜓2

𝜓3

𝜓4

𝜓5

𝜓6]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐿1
2 − 𝐿1(𝐿2 + 𝐿3)

𝐿2
2 − 𝐿2(𝐿3 + 𝐿1)

𝐿3
2 − 𝐿3(𝐿1 + 𝐿2)

4𝐿1𝐿2

4𝐿2𝐿3

4𝐿3𝐿1 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
1 0 0 −1 0 −1
0 1 0 −1 −1 0
0 0 1 0 −1 −1
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4 ]

 
 
 
 
 

[
 
 
 
 
 
 
𝐿1
2

𝐿2
2

𝐿3
2

𝐿1𝐿2

𝐿2𝐿3

𝐿3𝐿1]
 
 
 
 
 
 

. (15) 

In contrast, for pressure the following linear shape functions are employed:  

                            [

𝜙1

𝜙2

𝜙3

] = [

𝐿1

𝐿2

𝐿3

], (16) 

such that,  

 𝐿𝑖 =
1

2𝐴𝑎𝑟𝑒𝑎
(𝑎𝑖 + 𝑏𝑖𝑟 + 𝑐𝑖𝑧),           (∀𝑖 = 1,2,3). 

where 𝐴𝑎𝑟𝑒𝑎 is the area of the element’s triangular and 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are coefficients. Thus from 

Gauss’s theorem and rearranging the terms, we obtain the weak form of three dimensional Navier-

Stokes equations as:  

 [𝑄1
𝜏][𝑢𝑟] + [𝑞][𝑢𝑟] + [𝑄2

𝜏][𝑢𝜃] + [𝑄3
𝜏][𝑢𝑧] = 0, (17) 

 [𝑀][�̇�𝑟] + [𝐶(𝑢𝑟 , 𝑢𝜃, 𝑢𝑧)][𝑢𝑟] + [𝑐𝜃][𝑢𝜃] −
1

𝑅𝑒
[𝑄1][𝑝] + [𝐾𝑟𝑟][𝑢𝑟] + 

 [𝐾21][𝑢𝜃] + [𝐾22][𝑢𝑟] + [𝑘𝑟][𝑢𝑟] + [𝑘𝜃][𝑢𝜃] + [𝐾31][𝑢𝑧] + [𝐾33][𝑢𝑟] = 0, (18) 

 [𝑀][�̇�𝜃] + [𝐶(𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧)][𝑢𝜃] + [𝑐𝑟][𝑢𝑟] −
1

𝑅𝑒
[𝑄2][𝑝] + [𝐾11][𝑢𝜃] + 

 [𝐾12][𝑢𝑟] − [𝑘𝜃][𝑢𝑟] + [𝐾𝜃𝜃][𝑢𝜃] + [𝐾33][𝑢𝜃] + [𝐾32][𝑢𝑧] = 0, (19) 

 [𝑀][�̇�𝑧] + [𝐶(𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧)][𝑢𝑧] −
1

𝑅𝑒
[𝑄3][𝑝] + [𝐾11][𝑢𝑧] + [𝐾13][𝑢𝑟] − 
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 [𝑘3][𝑢𝑟] − [𝑘1][𝑢𝑧] + [𝐾22][𝑢𝑧] + [𝐾23][𝑢𝜃] + [𝐾𝑧𝑧][𝑢𝑧] = 0. (20) 

Consequentially, by using the theory of area coordinates for triangular elements, the mass matrix 

can be expressed as  

[𝑀] = ∫
Ω

𝑒 𝜓𝜓𝜏𝑑Ω = ∫
𝐴𝑒 ∫

2𝜋

0
[𝑁][𝐻][𝐻𝜏][𝑁𝜏]𝑟𝑑𝜃𝑑𝐴 = 2𝜋 ∫

𝐴𝑒 [𝑁][𝐻][𝐻𝜏][𝑁𝜏]𝑟𝑑𝐴, 

 where,  

 𝑟𝑚 =
𝑟1+𝑟2+𝑟3

3
,          𝑧𝑚 =

𝑧1+𝑧2+𝑧3

3
. 

 Thus,1   

 [𝑀] = 2𝜋𝑟𝑚[𝑁][𝐻][𝐻𝜏][𝑁𝜏] ∫
𝐴𝑒 𝑑𝐴 = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐻𝜏][𝑁𝜏]. (21) 

 Also, the derivative form of shape functions can be defined as  

 
𝜕𝜓

𝜕𝑟
= [𝑁]

𝜕[𝐻]

𝜕𝑟
= [𝑁][𝐵][𝐸], 

 
𝜕𝜓

𝜕𝜃
= 0, 

 
𝜕𝜓

𝜕𝑧
= [𝑁]

𝜕[𝐻]

𝜕𝑧
= [𝑁][𝐶][𝐸], 

where,  

 [𝐵] =
1

2𝐴𝑎𝑟𝑒𝑎

[
 
 
 
 
 
2𝑏1 0 0
0 2𝑏2 0
0 0 2𝑏3

𝑏2 𝑏1 0
0 𝑏3 𝑏2

𝑏3 0 𝑏1 ]
 
 
 
 
 

, [𝐶] =
1

2𝐴𝑎𝑟𝑒𝑎

[
 
 
 
 
 
2𝑐1 0 0
0 2𝑐2 0
0 0 2𝑐3

𝑐2 𝑐1 0
0 𝑐3 𝑐2

𝑐3 0 𝑐1 ]
 
 
 
 
 

. 

On the other hand, the final diffusion matrix formula can be written as  

 [𝐾𝑟𝑟] = 4𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝑁][𝐵][𝐸][𝐸𝜏][𝐵𝜏][𝑁𝜏], (22) 

  

 [𝐾𝑧𝑧] = 4𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝑁][𝐶][𝐸][𝐸𝜏][𝐶𝜏][𝑁𝜏], (23) 

  

 [𝐾11] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝑁][𝐵][𝐸][𝐸𝜏][𝐵𝜏][𝑁𝜏], (24) 

  

 [𝐾33] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝑁][𝐶][𝐸][𝐸𝜏][𝐶𝜏][𝑁𝜏], (25) 

                                                      
  1[ ]: Underline symbol refers to the evaluation of matrix at the centroid. 
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 [𝐾13] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝑁][𝐵][𝐸][𝐸𝜏][𝐶𝜏][𝑁𝜏], (26) 

  

 [𝐾31] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝑁][𝐶][𝐸][𝐸𝜏][𝐵𝜏][𝑁𝜏], (27) 

 [𝑘𝑟] = 4𝜋𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝑁][𝐻][𝐸𝜏][𝐵𝜏][𝑁𝜏], (28) 

  

 [𝑘1] = 2𝜋𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝑁][𝐻][𝐸𝜏][𝐵𝜏][𝑁𝜏], (29) 

  

 [𝑘3] = 2𝜋𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝑁][𝐻][𝐸𝜏][𝐶𝜏][𝑁𝜏], (30) 

 

[𝐾𝜃𝜃] = 0 , [𝐾22] = 0 , [𝐾12] = 0 , [𝐾21] = 0 , [𝐾23] = 0 , [𝐾32] = 0 , [𝑘2] = 0 ,       

              [𝑘𝜃] = 0.     

Moreover, the gradient matrix is defined as  

 [𝑄1] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐵][𝐸][𝐸𝜏], (31) 

  

 [𝑄3] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐶][𝐸][𝐸𝜏], (32) 

  

 [𝑞] = 2𝜋𝐴𝑎𝑟𝑒𝑎[𝐸][𝐻𝜏][𝑁𝜏], (33) 

  

 [𝑄2] = 0. 

Finally, the convective matrix is given by  

 [𝐶𝑟(𝑢𝑟)] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐻𝜏][𝑁𝜏][𝑢𝑟][𝐸
𝜏][𝐵𝜏][𝑁𝜏], (34) 

  

 [𝐶𝑧(𝑢𝑧)] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐻𝜏][𝑁𝜏][𝑢𝑧][𝐸
𝜏][𝐶𝜏][𝑁𝜏], (35) 

  

 [𝑐𝜃] = −2𝜋𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐻𝜏][𝑁𝜏][𝑢𝜃][𝐻𝜏][𝑁𝜏], (36) 

  

 [𝑐𝑟] = 2𝜋𝐴𝑎𝑟𝑒𝑎[𝑁][𝐻][𝐻𝜏][𝑁𝜏][𝑢𝜃][𝐻𝜏][𝑁𝜏], (37) 
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 [𝐶𝜃(𝑢𝜃)] = 0. 

As it is known the real challenge in the present problem lies non-linear term, which needs efficient 

treatment. So, to address this non-linear term of equation (17)-(20), the Newton-Raphson approach 

is achieved . As the result, the system of equation will be replaced by the following equation:  

 [

𝑀 0 0 0
0 𝑀 0 0
0 0 𝑀 0
0 0 0 0

] [

�̇�𝑟

�̇�𝜃

�̇�𝑧

�̇�

] +

[
 
 
 
 
 
 
𝜕𝑅1

𝜕𝑢𝑟

𝜕𝑅1

𝜕𝑢𝜃

𝜕𝑅1

𝜕𝑢𝑧

𝜕𝑅1

𝜕𝑝

𝜕𝑅2

𝜕𝑢𝑟

𝜕𝑅2

𝜕𝑢𝜃

𝜕𝑅2

𝜕𝑢𝑧

𝜕𝑅2

𝜕𝑝

𝜕𝑅3

𝜕𝑢𝑟

𝜕𝑅3

𝜕𝑢𝜃

𝜕𝑅3

𝜕𝑢𝑧

𝜕𝑅3

𝜕𝑝

𝜕𝑅4

𝜕𝑢𝑟

𝜕𝑅4

𝜕𝑢𝜃

𝜕𝑅4

𝜕𝑢𝑧

𝜕𝑅4

𝜕𝑝 ]
 
 
 
 
 
 

[
 
 
 
 
𝑢𝑟

𝑛+1 − 𝑢𝑟
𝑛

𝑢𝜃
𝑛+1 − 𝑢𝜃

𝑛

𝑢𝑧
𝑛+1 − 𝑢𝑧

𝑛

𝑝𝑛+1 − 𝑝𝑛]
 
 
 
 

= − [

𝑅1

𝑅2

𝑅3

𝑅4

]. (38) 

 or  

 [𝑀]�̇� + [𝑆(𝑈)]Δ𝑈 = −[𝑅]. (39)  

6  Problem specification 

Poiseuille (𝑃𝑠) flow through a 2𝐷  axisymmetric straight channel is introduced in this study 

under isothermal condition. For this context, two different triangular finite element meshes are 

implemented, 2 × 2 and 5 × 5 as shown in Figure 3 , with connectivities structure. In addition, 

the mesh characteristics are introduced in Table 1.  
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Figure  3: Structured 2 × 2 and 5 × 5 finite element meshes.  

 

Table  1: Mesh characteristic parameters.  

Mesh  Total Element   Total Nodes   Boundary 

Nodes  

 Pressure 

Nodes  

2 × 2  8   25   16  9  

5 × 5   50   121   40   36  

 

Boundary conditions (𝑩𝑪𝒔): The setting of 𝐵𝐶𝑠 of the present channel problem is laid as 

follows (see Figure 4):   

(1) Poiseuille (𝑃𝑠) flow is specified at the inlet with zero radial velocity .  

(2) No-slip 𝐵𝐶𝑠 is applied on the top and bottom walls of the channels.  

(3) Zero radial velocity applies and zero pressure are applied on the outlet of the channels.  

  

   

Figure  4: Schema for flow problem, boundary conditions. 

 

7  Numerical results 

The numerical results concerned with the rate of error convergence of the problem under 

consideration by using Galerkin finite element method. Here the effect of power-law index (𝑛), 

consistency parameter ( 𝑘 ) and Reynolds number ( 𝑅𝑒 ) on the numerical convergence is 

investigated.  
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𝒏-variation:The rate of convergence for axial velocity and pressure components are pressented in 

Figure 5, with Re=0.001, 𝑘 = 1  and different values of the power-law index 𝑛  ( 𝑛 =

1,0.8,0.6,0.4,0.2). The results reveal that, the level of velocity convergence have been incresesed 

as the valuse of power-law index (𝑛 ) decreased (see Figure 5a) due to the shear thinning 

behaviours. In content and from Figure5b one can observe that there is no significant change in 

the level of convergence of pressure at the same setting of the power-law index (𝑛). Figure 5c 

shown that the level of convergence for velocity component is higher compared to pressure 

because of the influence of non-linearity behaviour.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                      (b) 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
                                         (c) 

 
Figure 5: Convergence of velocity and pressure; 𝑛 -various, 𝑘 = 1, 𝑅𝑒 = 0.001. 
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𝒌-variation: Opposite feature have been observed in the study of 𝑘-variation under fixed 𝑛 =

0.8 and fixed 𝑅𝑒 = 0.001. Here, the level of convergence for velocity and pressure almost 

closed for all value of 𝑘. The interesting thing in the results is that the level of convergence in 

the 𝑘-variation is almost double compared to the case of 𝑛-variation (compare Figure 5 and 

Figure 6).). For more detail comparison between the error and 𝐶𝑃𝑈 time is provided in Table 2 

in axial velocity. 

 

Table 2: Comparison of error and 𝐶𝑃𝑈 time ; 𝑛-various , 𝑘=1, 𝑅𝑒=0.001.  

 

  Time 

n-variation Error 0.2 0.5 0.8 5 15 25 

1 2Lzu  1.810-2 310-3 1.210-3 3.0410-5 3.310-6 1.5210-7 

CPU(s) 1.0141 2.0449 2.5226 11.3739 32.0353 52.3288 

0.8 2Lzu  2.910-2 4.910-3 1.910-3 6.0510-4 6.810-6 2.0910-7 

CPU(s) 1.1666 2.1067 2.6336 11.4011 32.1872 52.5862 

 

0.6 

 

2Lzu  4.210-2 710-3 2.710-3 7.410-5 7.910-6 3.3210-7 

CPU(s) 1.4285 2.3532 3.0728 11.5236 32.8504 52.9282 

   

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                        (b) 
  

Figure 6: Convergence of velocity and pressure; 𝑘-various, 𝑛=0.8, 𝑅𝑒=0.001.  

 

 



R.Y. Yasir& A. H. Al-Muslimawi             Numerical simulation of Power-Law… 
 

176 
 

Time-step

E
(u

z
)


0 1000 2000 3000 4000 5000

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

k=1_n=0.8_Re=0.001

k=1_n=0.8_Re=0.1

    

𝑹𝒆 -variation:Figure 7 illustrates the convergence of the axial velocity through variation in 

Reynolds number (𝑅𝑒) at fixed 𝑛-value (𝑛=0.8) and k-value (𝑘=1). The finding reflects the effect 

of 𝑅𝑒 on the level of convergence, where that level is high with high 𝑅𝑒. In addition we found 

out that the critical value of 𝑅𝑒 under the inelastic assumption is 1.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Convergence of axial velocity; 𝑅𝑒-various, 𝑛=0.8, 𝑘=1.  

   
 

Cross-channel velocity profiles in radial and axial component forms are provided in Figure 8 at 

fixed n (𝑛=0.5), 𝑘 (𝑘=1) and 𝑅𝑒=0.001. The axial velocity profile shows parabolic flow structure 

for 0 ≤ 𝑧 ≤ 2, where a Poiseuille flow is appeared over this zone. Along the axial span 0 ≤ 𝑧 ≤

2, the axial velocity decreases as 𝑧 increases, where a maxima at 𝑧 ≤ 0 reduce by almost 0.8 unit 

at 𝑧= -0.5 to 2. 

  

                                                      
 2 ∥∥𝑳𝟐

 : norm over 𝐿2 (least square measure) 
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Figure 8: Cross-channel axial velocity field and profile: 𝑛 =0.5, 𝑘 =1, 𝑅𝑒=0.001. 

   

 

8  Conclusion 

In this study, the numerical simulation for incompressible power-low inelastic fluid is conducted 

based on the Galerkin finite element method. The power-law model in shear-thinning response is 

used to describe shear viscous stress. The effect of a consistency parameter (𝑘) and a power-law 
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index (𝑛) are shown in this investigation. In addition the level of Reynolds number (𝑅𝑒 ) under 

𝑘-variation and 𝑛-variation is considered as well. 

The convergence analysis of velocity and pressure was done to identify the effect of 𝑘, 𝑛 and 𝑅𝑒 

on the acceleration of convergence. From the results one can observe that, the rate of convergence 

of velocity is increased as power-law index (𝑛) decreased, whereas an opposite feature is appeared 

with the a consistency parameters (𝑘) and (𝑅𝑒) . In contrast, less significant is observed for 

isotropic pressure.  
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ةالمحاكاة العددية للسوائل غير المرنة في قانون الطاقة باستخدام طريقة العناصر المحدود  
   
 

ماوين المسلعلاء حس ،ياسر ياسين ريسان  

، جامعة البصرة قسم الرياضيات ، كلية العلوم  

 

 
 المستخلص

يتم استخدام معادلة حيث ،  ض الطاقة غير القابل للضغط، تم تقديم الدراسة العددية للسائل غير المرن المنخف البحثفي هذه 

تم حل مشكلة ف حركة السائل. علاوة على ذلك ، الاستمرارية )الحفظ الشامل( والحفظ المعتمد على الوقت لمعادلات الزخم لوص

أجريت الدراسة  ،من الناحبة العددية(  PLIM  ) ةزجة ، مع نموذج مرن لقانون الطاقافتراضات غير مرنة لالتدفق تحت 

يوتونية وغير المرنة لتخفيف المقارنة بين النتائج الن (. ركزت الدراسة على GFEMعلى أساس طريقة العناصر المحددة ) 

 .القص

أن هناك تأثيرًا اوضحت  نموذج الطاقة المرنة منخفضة الطاقة وعدد رينولدز. النتائج  معلمات تم إجراء تحليل التقارب وفقاً  

كبيرًا من المعلمات غير المرنة على معدلات التقارب الزمني للسرعة ، بينما بالنسبة إلى الضغط ، فإن التغيير في التقارب 

 .بسيط

 

 
 
 

 
 
 
  
 
 
 
 
 
 
 
                                                                                       


