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Abstract

In this paper the numerical study for incompressible power-low inelastic fluid is presented.
Physically, a continuity equation (mass conservation) and time-dependent conservation of
momentum equations are utilized to describe the motion of the fluid. Moreover, the flow problem
is solved under viscous inelastic assumptions, with a power-law inelastic model (PLIM).
Numerically, the study has been conducted based on the Galerkin finite element method (GFEM).
Attention is paid to the comparison between Newtonian results and shear-thinning inelastic.

The analysis of convergence under the parameters of power-low inelastic model and Reynolds
number is conducted. The Findings reveal that, there is a significant effect from the inelastic
parameters upon the the velocity temporal convergence-rates of velocity, while for pressue, the

change in convergence is modest.
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1 Introduction

In this study , a numereical analysis of inelastic ( general Newtonian ) fluid is performed with a
Galerkin finit element (GFEM) algorithm. Here, the general Newtonian fluid is usually governed
by two differential equations; named conservation of mass and time-dependent conservation of
momentum. These equation are elliptic partial differential equations and presented in this
investigation in cylindrical coordinate system (Axisymmetric flow) (for more detials see [1]).
Particularly, a general Newtonian fluid plays an important role in various industries, where many
industrial processes involve this type of fluid. In this type of fluid the shear stress is defined as a
non-linear function of shear rate at the particular time. So, we need to add a constitutive equation
to treat the non-linearity behaviour of shear stress. For that purpose, power law shear-thinning
(pseudo-plastic), shear thickness model is implemented as a well presented model for simulating
this type of fluid. A power-law model is originally proposed by De Waele-Ostwald [2]. Also in
1929, Norton introduced a one-dimensional case of the power law [3]. In 1954, Hoff [4] proposed
the power law in the three-dimensional version, and this model is named the Norton-Hoff one.
This kind of model describes the shear stress as a function of a second invariant of rate of
deformation tensor. Since this model contains two parameters only, thus one can say that this
model is the easiest time-independent non Newtonian model [5]. Here, The (PLIM) is defined as
(161, [7D

t = (kly" Yy,
where, y is the shear rate for simple shear flow, k is a consistency parameter and n is a power-
law index. Approximately, this viscosity model describes the behavior of a real non-Newtonian
fluid. In the case of that (n < 1), the (PLIM) gives that the viscosity decreases as the shear rate
increases, , which is called shear thinning liquid (more detials in sections 3 and 4 below). This case
requires a fluid with infinite viscosity at rest and zero viscosity as the shear rate approaches
infinity, but a real fluid has both a minimum and a maximum effective viscosity that depend on
the physical chemistry at the molecular level. Therefore, the (PLIM) is only a good description of
fluid behavior across the range of shear rates to which the coefficients were fitted. There are a
number of other models that better describe the entire flow behavior of shear-dependent fluids, but
they do so at the expense of simplicity, so the power law is still used to describe fluid behavior,
permit mathematical predictions, and correlate experimental data.
Particularly, many studies have been done by using (PLIM). Garrioch and James [8] implemented
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a numerical study for Newtonian and power-law shear-thinning fluids in high-speed, laminar flow
through a conical channel. In this study, the study emphasized on the pressure drop of creeping
Newtonian and Non-Newtonian flows in a cone. Missirlis et al. [9] studied the steady motion of
spheres representing particles inside tubes filled with different fluids using both a finite-element
and a finite-volume method. There, the rheology of the fluids has been modelled by the power-law
able to describe the shear-thinning (pseudoplastic) behaviour of a series of polymer solutions.
Numerical simulation based on finite element method for general Newtonian has been conducted
by Mitsoulis and Kotsos [10]. In this study, the Herschel-Bulkley constitutive model is
implemented, which reduces to the Newtonian, power-law and Bingham, models. Belblidia et al.
[2] used a Taylor-Galerkin/pressure-correction to address the inelastic die-swell flows under two
assumptions ; incompressible and compressible presentation. Wahba [11] used the power-law
model to investigate shear-thinning and shear-thickening effects of fluid on the transient flow
behavior.

Numerically, Galerkin finite element approach is implemented to solve the governing equations
of incompressible general Newtonian flow in cylindrical coordinates [12]. Our previous studies
have mostly focused primarily on the steady state flow of Newtonian fluids through straight
channel, and have not investigated how general Newtonian features influence flow behavior (see
[1D).

The present study aims to present a study on the incompressible power-low inelastic fluid with a
viscosity dependent on simple shear-rate. The novelty here is to study the temporal convergence-
rate of the system solution that is taken to be steady state, incompressible, axisymmetric, and
laminar, which did not address by researchers previously. In this context, Poiseuille(Ps) flow along
a two dimensional planar straight channel, under isothermal condition is studied. The main results
of current study focused on the convergence rate of velocity and pressure solutions under the
variation of power low parameters and Reynolds number presented. Furthermore, determination
of the critical levels of Reynolds number (Re) is also reoresented the excited issue of this study.
Numerical treatments are presented for governing system, where we are utilzed the Galerkin finite
element method (GFEM).

2 Mathematical modelling

For inelastic (non-Newtonian) constitutive modelling, the extra stress tensor may be reforested as
T =2uy,éd, (1)
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where, y, & represent shear-rate and strain-rate for simple shear flow and extensional flow,

respectively, and d is the deformation rate of the fluid, such that

y =211, )
. _ gl
&= ”di (3)
d =~ (Vu+Vu). (4)

Here, 11; and 111, represent the second and third invariants of the rate of strain tensor d which,

in axisymmetric coordinate system can be defined as ( see [5])

g =5tr(@d) = G + GD + (D2 +3 G2+ 593, )
and
Iy = det(d) =2 {Zr 2 _ 1 (24 Tny2y (6)

Hence, for incompressible inelastic fluid flows under an isothermal setting, the governing
equations may be expressed as:
V-u=0, ()

por =V (2u(y,)d) — p(u - Vu) — Vp. (8)
Here, for inelastic fluids the viscosity is a function of combined shear-rate and extension—rate.
Also, p is the pressure and p is the density of the fluid . In the cylindrical coordinates the
continuity equation for conservation of mass and time-dependent conservation of momentum

equation are expressed as:

dur 1, 10up | Oy

-u = 0. 9
or t r T t r 06 0z ( )
r-direction
ou, aur dur _ —10p | 2us9%u,
at tUr ( u9)+uz dz  p or p 0r2
&azur _ M5 Oup | 2usQur | ps 0%up  ps 07Uy , ps 07Uy (10)
pr? 962 prZ 90 pr Or prdBor  p 0z2 p 0zor’
6-direction
6u9 6u9 dug Oug _ —10p | 2us 0uy
u u u — T
t U + 9( r+ )+ Z9z ~ prae ' pr? a6
%62119 ks 0%ug | ps 0%ur | psd’ug | ps 0%u, (11)

pr2 962 p Or? prordd = p 0z2 pr 8z96°
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z-direction
ouy ouy 10uy, ou, —10p . 2us0%u,
= = —-_—= u —_— —_—— —_—
o T, TlUeT oy T UG, p 0z = p 022
g HsO%Uy | B Qur | s QUp o ps OPur o K O%up 4 ps %l (12)

p 0r2  pr dz pr dr  p drdz pr? 862 = prdodz

In contrast, the momentum equation (8) can be also defined by the non-dimensional groups of
Reynolds number (Re), which is defined by the scales of velocity (U), length (L) and density (p)
(for more details see ([12]-[15])). Thus, in this case the non-dimensional momentum equation for

general Newtonian can be written as

ReZ: =V - (2u(y,€)d) — Re(u - V) — Vp. (13)

3 Material modelling considerations

For non-Newtonian fluids, there are many possible inelastic constitutive models to consider. Some
of these models describe shear viscous stress response and the others present extensional response.
In addition, many materials are non-Newtonian, and exhibit either shear-thinning or shear-
thickening behaviour.

The most fundamental constitutive model is that which describes shear viscous stress response of
power-law form, which describes shear-thinning or shear-thickening behaviour. Fluids of this type,

originally proposed by Ostwald-de Waele, may be expressed as:

T = (kly|" Dy, (14)
where k is a consistency parameter and n is a power-law index. Then, higher k-values are found
to exhibit more viscous fluid characteristics. When n = 1, the Newtonian limiting approximation
is recovered, with no shear-rate dependence; shear thinning is gathered for n < 1 (as applied in

this task) and shear-thickening is observed for n > 1.

4 The material functions of power low model

In this section the behaviour of the (PLIM) is presented to see the effect of n- variation and k-
variation. The Newtonian and inelastic material functions are considered in Figure 1. In this
Figure the viscosity is presented as a function of the shear rate (y), with k = 1 and n- variation.

The constitutive model that describes shear viscous stress response of power-law form, which

167



describes shear-thinning or shear-thickening behaviour (see eq (14)). In this model k is a
consistency parameter and n is a power-law index. Here one can see that, when n =1, the
Newtonian limiting approximation is recovered, with no shear-rate dependence; shear thinning is

gathered for n < 1 and shear-thickening is observed for n > 1 (see Figure 1).

Material
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k=1, k=1.5
—k=1,n=1 |
—k=1,n=0.9 |
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05+
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Figure 1: Material functions, Newtonian vs Inelastic, n-variation, k = 1.

Moreover, to see the behaviour of the model when the level of k is varied, the viscosity is plotted
as a function of the shear rate for that sense (see Figure 2). The Figure shown that, higher k-values
are found to exhibit more viscous fluid characteristics.
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Figure 2: Material functions, Newtonian vs Inelastic, k-variation, n =0.8.

5 Numerical method

The Calerkin finite element method is proposed to solve the system of equation (9)-(12). The main

concept of this method is to find the weak form of the equation by using appropriate weight

functions W and Q , such that the first function W for momentum equation and the second

function Q@ for continuity equation. In addition, three quadratic shape functions of velocity

components in cylindrical coordinates are utilized. These functions are given in natural coordinates

as:

such that,

] [LE-Lil2+L3)] f1 0 0 -1 0 —19[l
V2| |L3—-L,(Lz+Ly)] |0 1 0 -1 -1 0 ||L3
s |5 —Ls(Li+Ly)| |0 0 1 0 -1 —1}/3 ) (15)
1/)4- 4L1L2 O O 0 4 0 0 LILZ
Ys!  |4L,L, 000 0 4 0 (|L,Ls
[Yel 141,14 0 0 0 0 0 4 .|
In contrast, for pressure the following linear shape functions are employed:
¢1 Ll
¢2| = (L2, (16)
¢3 Ly
LL' = ! (Cli + biT' + CL'Z), (Vl = 1,2,3)

ZAarea

where A, is the area of the element’s triangular and a;, b;, and c; are coefficients. Thus from

Gauss’s theorem and rearranging the terms, we obtain the weak form of three dimensional Navier-

Stokes equations as:

[Q11[ur] + [q][ur] + [Qz][ue] + [Q3][u,] = 0, (17)
[M][i,] + [C (ur g, u)][ur] + [col[p] = = [Q11[p] + [Krr ][] +
[Kz11[ug] + [Ka2][ur] + [kr][ur] + [Kol[ug] + [Ka1][u,] + [Ks3][ur] = 0, (18)
[M][i2g] + [C (tr, g, u)][1t6] + [cr][ur] = = [Q21[P] + [Kya][p] +
[Ki2][ur] — [kol[wr] + [Koollus] + [Kaz][ug] + [K52][uz] = 0, (19)

[M][i] + [C(ur, ug, uz)][u] = R—le [Qs][p] + [Kia][u] + [Kis][ur] —
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[es][wr] = [ka][u,] + [Ka2][uz] + [Ka3][ug] + [K;-][u,] = 0. (20)

Consequentially, by using the theory of area coordinates for triangular elements, the mass matrix

can be expressed as

[M] = foe Y7dQ = [,, J;" [NI[H][H][N"]rd6dA = 2 [,, [N][H][H"][N"]rdA,

where,
_ T1+T2+T3 _ Zl+Zz+Z3
Tm == m=—
Thus,*
[M] = 2nr, [N][H][H][NT] [, dA = 20T Aarea[NI[H][HT][N"]. (21)

Also, the derivative form of shape functions can be defined as

% — N2 = [Ny(BI(E],

or ar
oY
2~
Y 0[H]
2 = (N2 = N e)E,
where,
2b, 0 0 2¢, 0 0
0 2b, 0 0 2 0
1 |0 0 2b 1 |0 0 26
[B] - 2Agrea bZ bl 0 ’[C] - 2Agrea | Co 1 0
0 b3 bz 0 C3 o)
_b3 0 b1 i LC3 0 €1

On the other hand, the final diffusion matrix formula can be written as

(K] = 4nrmAareaR£e [NI[BILET[ET][BT][N"], (22)
[Kzz] = 47t Aarea é [N][CILETIEFT[CTIINT], (23)
[K11] = 2t Aarea Rﬁe [N][BI[EILE*][BT]IN"], (24)
[K33] = ZHTmAarea£ [NI[CILETIEFT[CTIIN], (25)

[ 1: Underline symbol refers to the evaluation of matrix at the centroid.
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[Kis] = 2T Aqrea - [NT[B][EN[ETI[CTIINT,

[K31] = 277 Agrea é [N][CLETIEF][BF]INT],

[ky] = 4 Agreq 2o [N1[H][ET][BTI[N7],

[k1] = 2mAarea é [N]IH][ET][BF][N7],

[ks] = ZHAareaR%[N] [H][EF][CF]INT],

(26)

(27)

(28)

(29)

(30)

[Kogl =0, [Kz2] =0, [Ki2] =0, [K1]=0, [Ky3] =0, [K32]=0, [k;] =0,

[kg] = 0.
Moreover, the gradient matrix is defined as
[Q1] = 277 Agrea [ N][B][E][E7],

[Qs] = 21 Aarea[N][CI[E][ET],

[q] = 2mAsrea[E][HT][NT],

[@2] = 0.

Finally, the convective matrix is given by

[Cr(wr)] = 21T Agrea [N [H]H ][N [u, ][E*][BF][N 7],

[C2(uz)] = 2nTnAgrea NI IH]H ] IN*][u ] [ET][CT]INT],

[co]l = —2mAgrea NI[H][HF][N*][ug][H*][NF],

[er] = 2mAgrea NI[HIHF][N*][ug[HF][N"],
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[Co(ug)] = 0.

As it is known the real challenge in the present problem lies non-linear term, which needs efficient

treatment. So, to address this non-linear term of equation (17)-(20), the Newton-Raphson approach

is achieved . As the result, the system of equation will be replaced by the following equation:

_aRl

or

M
0
0
0

OOEO

OEOO

6 Problem specification

O O OO

H

ou,
OR,
ou,
OR3
ou,
OR,

L0u,

dR,
dug
dR,
dug
AR
dug
AR,
dug

AR,
ou,
AR,
duy,
ARz
ou,
OR,
ou,

aRl_
op

ap
dR3
ap
AR,
“ap |

n+1 n
[ur - ur] Rl
ug™ —ug|_ _|Re
uttl — 2t
lpn+1 _ an R4

[M]U + [S(U)]AU = —[R].

R3[|

(38)

(39)

Poiseuille (Ps) flow through a 2D axisymmetric straight channel is introduced in this study

under isothermal condition. For this context, two different triangular finite element meshes are

implemented, 2 X 2 and 5 x 5 as shown in Figure 3 , with connectivities structure. In addition,

the mesh characteristics are introduced in Table 1.
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Figure 3: Structured 2 x 2 and 5 x 5 finite element meshes.

Table 1: Mesh characteristic parameters.

Mesh Total Element| Total Nodes Boundary Pressure
Nodes Nodes

2 X2 8 25 16 9

5x%x5 50 121 40 36

Boundary conditions (BCs): The setting of BC, of the present channel problem is laid as
follows (see Figure 4):

(1) Poiseuille (Ps) flow is specified at the inlet with zero radial velocity .

(2) No-slip BCs is applied on the top and bottom walls of the channels.

(3) Zero radial velocity applies and zero pressure are applied on the outlet of the channels.

u,=u_=0 (Topwall)

u,. =0

> u. =0
u .= Ps Flow :
- > P=0
(Inlet) (Outlet)
—
——

u,=u_=0 (Bottom wall)

Figure 4: Schema for flow problem, boundary conditions.

7 Numerical results

The numerical results concerned with the rate of error convergence of the problem under
consideration by using Galerkin finite element method. Here the effect of power-law index (n),
consistency parameter (k) and Reynolds number (Re) on the numerical convergence is

investigated.
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IIE(u, )l

n-variation:The rate of convergence for axial velocity and pressure components are pressented in

Figure 5, with Re=0.001, k =1 and different values of the power-law index n (n =

1,0.8,0.6,0.4,0.2). The results reveal that, the level of velocity convergence have been incresesed

as the valuse of power-law index (n) decreased (see Figure 5a) due to the shear thinning

behaviours. In content and from Figure5b one can observe that there is no significant change in

the level of convergence of pressure at the same setting of the power-law index (n). Figure 5¢

shown that the level of convergence for velocity component is higher compared to pressure

because of the influence of non-linearity behaviour.
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Figure 5: Convergence of velocity and pressure; n -various, k = 1, Re = 0.001.
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k-variation: Opposite feature have been observed in the study of k-variation under fixed n =
0.8 and fixed Re = 0.001. Here, the level of convergence for velocity and pressure almost
closed for all value of k. The interesting thing in the results is that the level of convergence in
the k-variation is almost double compared to the case of n-variation (compare Figure 5 and
Figure 6).). For more detail comparison between the error and CPU time is provided in Table 2

in axial velocity.

Table 2: Comparison of error and CPU time ; n-various , k=1, Re=0.001.

Time
n-variation Error 0.2 0.5 0.8 5 15 25
. Juzll, | 1.8x107 | 3x10° | 1.2x10° | 3.04x105 | 3.3x10° | 1.52x107
CPU(s) | 10141 | 2.0449 | 25226 | 11.3739 | 32.0353 | 52.3288
08 Juzll, | 2.9x107 | 4.9x10° | 1.9x10° | 6.05x10% | 6.8x10° | 2.09x107
CPU(s) | 11666 | 2.1067 | 2.6336 | 11.4011 | 32.1872 | 525862
06 Juall, | 42x107 | 7x10% | 27x10% | 7.4x10° | 7.9x10° | 3.32x107
CPU(s) | 14285 | 23532 | 3.0728 | 115236 | 32.8504 | 52.9282

C 3 10° 3

1 10 .
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S5 S
11

o o
o
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TANN
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o o

IE(R)I

1 ] P 4 10°

. - - . I I TR R SR AN R NN T S R M-
10000 15000 20000 0 5000 10000 15000 20000
Time-step Time-step

5000

(a) (b)

Figure 6: Convergence of velocity and pressure; k-various, n=0.8, Re=0.001.
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Re-variation:Figure 7 illustrates the convergence of the axial velocity through variation in
Reynolds number (Re) at fixed n-value (n=0.8) and k-value (k=1). The finding reflects the effect
of Re on the level of convergence, where that level is high with high Re. In addition we found

out that the critical value of Re under the inelastic assumption is 1.

n=0.8_Re=0.001
n=0.8_Re=0.1 E

10k k=1_
k=1_

IECu,)Il

10"k

10°E by
0 1000 2000 3000 4000 5000
Time-step

Figure 7: Convergence of axial velocity; Re-various, n=0.8, k=1.

Cross-channel velocity profiles in radial and axial component forms are provided in Figure 8 at
fixed n (n=0.5), k (k=1) and Re=0.001. The axial velocity profile shows parabolic flow structure
for 0 < z < 2, where a Poiseuille flow is appeared over this zone. Along the axial span 0 < z <
2, the axial velocity decreases as z increases, where a maximaat z < 0 reduce by almost 0.8 unit

at z=-0.5to 2.

2 I, :normover L, (leastsquare measure)
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Uz: 0.00 0.09 0.17 0.26 0.35 0.43 0.52 0.60 0.69 0.78 0.86 0.95
_ =0.8]
[2=0.5] [z
\ I ] \1 | 1L [2:1]

1

B [2] z=0.5

[3]1z=0.8
0.75 B [4] 2=1 -
05} -
0.25F ]
07 — \ ‘ N S TR A
0.2 04 06081

u

z

Figure 8: Cross-channel axial velocity field and profile: n =0.5, k =1, Re=0.001.

8 Conclusion

In this study, the numerical simulation for incompressible power-low inelastic fluid is conducted
based on the Galerkin finite element method. The power-law model in shear-thinning response is

used to describe shear viscous stress. The effect of a consistency parameter (k) and a power-law
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index (n) are shown in this investigation. In addition the level of Reynolds number (Re ) under
k-variation and n-variation is considered as well.

The convergence analysis of velocity and pressure was done to identify the effect of k, n and Re
on the acceleration of convergence. From the results one can observe that, the rate of convergence
of velocity is increased as power-law index (n) decreased, whereas an opposite feature is appeared
with the a consistency parameters (k) and (Re) . In contrast, less significant is observed for

isotropic pressure.
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