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Abstract 

 The main purpose of this paper, is to introduce and study the common fixed point 

by using the concept of partial metric space and combine with class of b-metric space 

under a contractive condition which introduce LJ-B. Ciric. Our results improve and unify 

a multitude of fixed point theorems and generalize some recent results in partial b-metric 

spaces.  
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1.   Introduction 

 In Czerwik [1] introduced the concept of b-metric space as a generalization of 

metric space and proved the Banach Contraction principle in b-metric space. In Matthew 

[2] introduced the notion of partial metric space as a generalization of metric space in 

which each object does not necessarily have a zero distance from itself. 

Recently in Shukla [3] introduced the notion of partial b-metric space as a 

generalization of partial metric space and b-metric space, and he proved the fixed point 

theorem of Banach contraction principle and Kannan type mapping in partial b-metric 

space. 

In this paper, we prove some fixed point in partial b-metric space for generalized 

contraction which introduced by Ciric [4] (see for instance ([5]-[12]) and refernce   

thereof) 

2.  Preliminaries 

 we recall some definitions and notions of partial b-metric space.  
Definition 2.1 [1] A b-metric on a nonempty set   is a self map         

satisfying the following conditions:   
    (bM1)          if and only if    , for every     in  ;  
    (bM2)              ,  
    (bM3) There exist areal number     such that                         

, for every       in  ;  
 the pair       is called a b-metric space (b.M.S) a generalization of usual metric 

space.  

 

Definition 2.2 [6] A partial metric on a nonempty set  , is a self map 
        satisfying the following axioms:                           
(pM1)                          ,(separation axiom)  

(pM2)                 , (non-negativity and small self-distance)  

(pM3)               , (symmetry)  
(pM4)                               (triangular inequality)  
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 for all       in  . then       is called a partial metric space for short         It 
is clearly that, every metric is a partial metric.  

 

Definition 2.3 [7] Let   be a nonempty set,     be a given real number and let 
        be a self map such that for every       in  , the following conditions hold:   

(pbM1)      if and only if                     ,  
                     ,  
                    ,  

                               

 Then the pair       is called Partial b-Metric Space (Pb.M.S) for short.  
Remark:[7] 

    In Partial b-metric Space      , if        and         , then     but the 

converse may not be true.  
    we remark that every Partial b-Metric defines a b-Metric  , where        

                      for all        . 
 

 
 
 
 
 
 
 
 

 

 

 
Now we define the convergence of a sequence and Cauchy sequence in partial b-metric 

space. 

                        
Definition 2.4 [7] Let      be Partial b-metric spaces, Let       

 be any sequence in  , and    . Then:   
    1.  The      sequence is said to be convergent and convergent to  , if  
    

   
               

    2.  The      sequence is said to be Cauchy sequence in      , if  
    

     
         

exists and is finite;  

    3.        is said to be a complete partial b-metric space if for every Cauchy 

sequence      in  , there exists     such that  
    

     
            

   
                

 

 Note that in a partial b-metric space the limit of convergent sequence may not be 

unique[7].  

 

Metric Spaces 

b-Metric Spaces 
 

Partial b-Metric Spaces 
 

Partial Metric Spaces 
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Example 2.5 Let     , and         be a self map defined by  
                           

 for all      . 
Then       is partial b-metric space with       . but it is neither a b-metric 

nor partial metric space. Indeed, for any     we have            ; therefore,   is 

not a b-metric on  . Also for    ,    ,     we have              and 
                                             so  

                            for all     ;therefore,   is not a partial 

metric on  .  
 

Definition 2.6 [8] Two self map   and   of a non empty set   are called weakly 

compatible if they commute at coincidence points i.e, 

        for every     whenever,       

 

Definition 2.7 [8] Two self map   and   of a non empty set   are called weakly* 

compatible if they commute at one of their coincidence points that is, if there exists a 

point     such that       then         

 at weakly* compatible maps are more general than the weakly compatible maps 

for more details see,[8]. 

In (2014) Shukla [3] introduced the concept of partial b-metric space as a 

generalization of partial metric and b-metric spaces and proved Banach contraction 

principle in partial b-metric space.  

3.  Main Results 

 

Theorem 3.1  Let       be a complete partial b-metric Space with     and  
      be a self map satisfying the following condition:  
                    (1) 

 where  

                                   
 

 
                    

 and      
 

  
 ,      . 

Then,   posses a unique fixed point   and         .  
 

Proof. First we have to show that if fixed point of   exists then it is unique. Let 
      be two distinct, fixed points of  , that is,          . It follow from (1) 

that  

                                             
 

 
         

          

                            
 

 
                 

                          

  
 

  
               

 a contradiction. Thus we have    . 
Next, we have to show the existence of fixed point. Let      be arbitrary, set 

        . if         for some    , then        ,    is a fixed point of  . 
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suppose, further, that         for all    , for the sake of convenience 

assume that              . We claim that        .  
                                        

                                           

 
 

 
                           

                                         

 
 

 
                         

 There is three cases   

    1.  If  

                       

 then  

                                   
 which is contradiction.  

    2.  If  

                        
 then  

                                   
 

    3.  If  

            
 

 
                         

 then  

            
 

 
                         

 from partial b-metric triangular property  

 
 

 
                        

 

 
             

              
 

 
         

 

 
         

  
 

 
           

 

 where      
 

  
 , let   

  

 
, then              , where      

 

 
 . 

Therefore,         , where   
 

   
. 

Repeating this process, we have         

                        (2) 
 for all     There fore        . 

Now we will show that      is a cauchy sequence.It follow from (1) that for 
         

                                                

                                                        

                                                              
 by using (2) we obtain  
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 since   
  

 
      

 

  
  and   

 

   
.Then we have  

    
     

           

 Therefor      is a Cauchy sequence in  . Since   is a complete metric space there exists 
    such that  

    
   

           
     

                  (3) 

 we have to show   is a fixed point of  .  
                                              

                         
                                              

 
 

 
                     

 

                                             

 
 

 
                       

 by using (3) and letting     we obtain  

                           
 

 
          (4) 

                  is implies                , a contradiction, so that     . 
so   is a unique fixed point of  . 

 

Theorem 3.2 let         be a self maps on partial b-metric space (partial b-

metric Space) such that for every     in   and      
 

  
  

                  
Where,  

                                      
 

 
                      (5) 

 If       and one of    or    is a complete subspace of  . Then   and   have a 

coincident point. In addition   and   have a unique common fixed point   in   and 
          whenever   and   are weak* compatible.  

 

Proof. let    be an arbitrary point in  . Since      , we can choose      
such that        ,         and        , continuing this process we have 
         ,     

Now if          , for some    , then              ,   and   have a 

coincidence point. Assume           for every    , for the sake of convenience 

assume  

                  
 we claim that        . 
 By using (5) we have  
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 There is three cases.  

    1.  If  

                          
 then  

                            

              
 

    2.  If  

                          
 then  

                           

 is contraction.  

    3.  If  

            
 

 
                             

 then  

              
 

 
                            

 

 from partial b-metric triangular property we have  

 
 

 
                             

 
 

 
                                          

  
 

 
           

  
  

 
           

 where      
 

  
 , then              , where      

 

 
 . 

Therefore         , where   
 

   
. 

Repeating this process, we have  

        (6) 
                          for all    , therefore  

    
   

     

In view of theorem (3.1)      is a cauchy sequence in   . Since    is a complete 

(Pb.M.S), we have       is converge to some point   in  , that  
    

   
      

. 

Also the subsequences          and {      }are convergent to  . 

There exists    , such that      

             
     

                    (7) 

 Now, we claim       suppose, the contrary that           . 
Then,  
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 from (5) we have  

                        

                                            

 
 

 
                          

                                            

 
 

 
                           

 Hence  

                                           

                         
 

 
                           

 By using (5) and letting     we obtain  

                             
 

 
          

                               
 a contraction so         and   is coincidence point of   and  . Now to show that   
and   have a common fixed point. 

If   and   are weak* compatible then we have             whenever 
       , this yields that         

Hence   is a common fixed point of   and   

we claim that   and   have a unique common fixed point. Let   and   in   be two 

distinct fixed points of   and  , then 

 

                         

                 

 a contradiction. Hence          and    .  
Banach contraction principle in partial b-metric space. 

Corollary 1 [3] Let       be a complete partial b-metric space with     and let  

      be a self map such that  
                   (8) 

 for every     in  , where        . Then   posses a unique fixed point   in   and 
        .  

Corollary 2 [7] Let       be a complete partial b-metric space with     and let 
      be a self map such that 

                            (9) 

for every     in  , where      
 

  
 . Then   posses a unique fixed point   in   and 

        . 
 

Corollary 3 [3] Let       be a complete partial b-metric space with     and let 
      be a self map such that 

                                       (10) 
for every     in  , where        . Then   posses a unique fixed point   in   and 
        . 

with     in theorem (3.1) we can get corollary in partial b-metric space. 



A.M. Hashim  and  H. A. Bakry                                                Fixed points theorems for ciric' mappings… 

23 
 

Corollary 4 Let       be a complete (P.M.S) and let       be a self map such 

that 

                                       
 

 
                   

for every     in  , where        . Then   posses a unique fixed point in   . 
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المتري الجزئي -حول بعض مبرهنات التقاط الصامدة في الفضاء ب   
 

 
 أمل محمد هاشم  و حنين عدنان بكري

العراق،  البصرة،  جامعة البصرة، العلوم  كلية ، قسم الرياضيات   

 
 

 المستخلص

                               
ستعراض ودراسة النقاط الصامدة المشتركه باستخدام مفهوم الفضاء الجزئً ٌهدف هذا البحث الى ا      

المتري تحت الشرط الذي قدمه سٌرٌك . النتائج التً حصلنا علٌها هً تحسٌن  -ب المتري وارتباطه بفئة  الفضاء 
 المتري الجزئً.      -ب وتوحٌد العدٌد من النتائج فً مبرهنات النقطه الصامده وتعمٌم بعض النتائج الحدٌثه فً الفضاء


