

Fixed points theorems for ciric' mappings in partial b-metric space

Amal M. Hashim and Haneen A. Bakry

Department of Mathematics, College of Sciences, University of Basrah,Basrah-*Iraq*

Doi 10.29072/basjs.20190102 , Article inf., Received: 2/2/2019 Accepted: 23/3/2019 Published: 30/4/2019

Abstract

The main purpose of this paper, is to introduce and study the common fixed point by using the concept of partial metric space and combine with class of b-metric space under a contractive condition which introduce LJ-B. Ciric. Our results improve and unify a multitude of fixed point theorems and generalize some recent results in partial b-metric spaces.

Keywords : common fixed point, weak* compatible maps, Partial b-metric space

1. Introduction

In Czerwik [1] introduced the concept of b-metric space as a generalization of metric space and proved the Banach Contraction principle in b-metric space. In Matthew [2] introduced the notion of partial metric space as a generalization of metric space in which each object does not necessarily have a zero distance from itself.

Recently in Shukla [3] introduced the notion of partial b-metric space as a generalization of partial metric space and b-metric space, and he proved the fixed point theorem of Banach contraction principle and Kannan type mapping in partial b-metric space.

In this paper, we prove some fixed point in partial b-metric space for generalized contraction which introduced by Ciric [4] (see for instance ([5]-[12]) and refernce thereof)

2. Preliminaries

we recall some definitions and notions of partial b-metric space.

Definition 2.1 [1] A b-metric on a nonempty set *X* is a self map $d: X^2 \to R^+$ *satisfying the following conditions:*

(bM1) $d(x, y) = 0$ if and only if $x = y$, for every x, y in X;

(bM2) $d(x, y) = d(y, x)$,

(bM3) There exist areal number $b \ge 1$ such that $d(x, y) \le b[d(x, z) + d(z, y)]$, for every x, y, z in X;

the pair (X, d) is called a b-metric space (b.M.S) a generalization of usual metric space.

Definition 2.2 [6] A partial metric on a nonempty set *X*, is a self map $p: X^2 \to R^+$ satisfying the following axioms: (pM1) $x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y)$, (separation axiom) (pM2) $0 \le p(x, x) \le p(x, y)$, (non-negativity and small self-distance) (pM3) $p(x, y) = p(y, x)$, (symmetry)

(pM4) $p(x, z) \leq p(x, y) + p(y, z) - p(y, y)$, (triangular inequality)

for all x, y, z in X. then (X, p) is called a partial metric space for short $(P. M. S)$ It is clearly that, every metric is a partial metric.

Definition 2.3 [7] Let *X* be a nonempty set, $b \ge 1$ be a given real number and let $\rho: X^2 \to R^+$ be a self map such that for every x, y, z in X, the following conditions hold: (pbM1) $x = y$ if and only if $\rho(x, x) = \rho(x, y) = \rho(y, y)$, (pbM2) $\rho(x, x) \leq \rho(x, y)$, (pbM3) $\rho(x, y) = \rho(y, x)$, $\rho(x, y) \le b[\rho(x, z) + \rho(z, y)] - \rho(z, z)$ Then the pair (X, ρ) is called Partial b-Metric Space (Pb.M.S) for short. **Remark:***[7]*

In Partial b-metric Space (X, ρ) , if $x, y \in X$ and $\rho(x, y) = 0$, then $x = y$ but the converse may not be true.

we remark that every Partial b-Metric defines a b-Metric d, where $d(x, y) =$ $2\rho(x, y) - \rho(x, x) - \rho(y, y)$ for all $x, y, z \in X$.

Now we define the convergence of a sequence and Cauchy sequence in partial b-metric space.

> **Definition 2.4** [7] Let (X, ρ) be Partial b-metric spaces, Let $\{x_n\}$ *be any sequence in X, and* $x \in X$ *. Then:* 1. The $\{x_n\}$ sequence is said to be convergent and convergent to x, if $\lim \rho$ 2. The $\{x_n\}$ sequence is said to be Cauchy sequence in (X, ρ) , if

$$
\lim_{n,m\to\infty}\rho(x_n,x_m)
$$

exists and is finite;

3. (X, ρ) is said to be a complete partial b-metric space if for every Cauchy sequence $\{x_n\}$ in X, there exists $x \in X$ such that

$$
\lim_{n,m\to\infty}\rho(x_n,x_m)=\lim_{n\to\infty}\rho(x_n,x)=\rho(x,x),
$$

Note that in a partial b-metric space the limit of convergent sequence may not be unique[7].

Example 2.5 *Let* $X = R^+$ *, and* $\rho: X^2 \to R^+$ *be a self map defined by* $\rho(x, y) = [\max\{x, y\}]^4 + |x - y|^4$

for all $x, y \in X$.

Then (X, ρ) is partial b-metric space with $b = 2^4 > 1$. but it is neither a b-metric nor partial metric space. Indeed, for any $x > 0$ we have $\rho(x, x) = x^p \neq 0$; therefore, ρ is not a b-metric on X. Also for $x = 6$, $y = 2$, $z = 3$ we have $\rho(x, y) = 6^4 + 4^4$ and $\rho(x, z) + \rho(z, y) - \rho(z, z) = 6^4 + 3^4 + 3^4 + 1^4 - 3^4 = 6^4 + 3^4 + 1^4$ so

 $\rho(x, y) > \rho(x, z) + \rho(z, y) - \rho(z, z)$ for all $b = 2⁴$; therefore, ρ is not a partial metric on X .

Definition 2.6 *[8] Two self map f* and *g* **of** *a* non empty set *X* are called weakly *compatible if they commute at coincidence points i.e,*

 $fgz = gfz$ for every $z \in X$ whenever, $fz = gz$

Definition 2.7 *[8] Two self map* f *and* g *of a non empty set* X *are called weakly* compatible if they commute at one of their coincidence points that is, if there exists a point* $x \in X$ *such that* $fx = Tx$ *then* $fTx = Tfx$

at weakly* compatible maps are more general than the weakly compatible maps for more details see,[8].

In (2014) Shukla [3] introduced the concept of partial b-metric space as a generalization of partial metric and b-metric spaces and proved Banach contraction principle in partial b-metric space.

3. Main Results

Theorem 3.1 *Let* (X, ρ) *be a complete* partial b-metric Space *with* $b \ge 1$ *and* $f: X \to X$ be a self map satisfying the following condition: $\rho(fx, fy) \leq \lambda M(x, y).$ (1)

where

$$
M(x, y) = \max\{\rho(x, y), \rho(x, fx), \rho(y, fy), \frac{1}{2}[\rho(x, fy) + \rho(y, fx)]\}.
$$

and $\lambda \in [0, \frac{1}{2}]$ $\frac{1}{2b}$, $x, y \in X$.

Then, f posses a unique fixed point u and $\rho(u, u) = 0$.

Proof. First we have to show that if fixed point of f exists then it is unique. Let $u, v \in X$ be two distinct, fixed points of f, that is, $fu = u \neq fv = v$. It follow from (1) that

$$
\rho(u,v) = \rho(fu,fv) \leq \lambda \max\{\rho(u,v),\rho(u,fu),\rho(v,fv),\frac{1}{2}[\rho(u,fv) +
$$

 $\rho(v, fu)]$

$$
= \lambda \max \{ \rho(u, v), \rho(u, u), \rho(v, v), \frac{1}{2} [\rho(u, v) + \rho(v, u)] \}
$$

= $\lambda \max \{ \rho(u, v), 0, 0, \rho(u, v) \}$
 $\leq \frac{1}{2b} \rho(u, v) < \rho(u, v),$

a contradiction. Thus we have $u = v$.

Next, we have to show the existence of fixed point. Let $x_0 \in X$ be arbitrary, set $x_{n+1} = fx_n$. if $x_n = x_{n+1}$ for some $n \in N$, then $x_n = fx_n$, x_n is a fixed point of f.

suppose, further, that $x_n \neq x_{n+1}$ for all $n \in N$, for the sake of convenience assume that $\rho_n = \rho(x_n, x_{n+1})$. We claim that $\rho_n < \rho_{n-1}$.

$$
\rho_n = \rho(x_n, x_{n+1}) = \rho(f x_{n-1}, f x_n) \le \lambda M(x_{n-1}, x_n)
$$

\n
$$
\le \lambda \max\{\rho(x_{n-1}, x_n), \rho(x_n, f x_n), \rho(x_{n-1}, f x_{n-1}),
$$

\n
$$
\frac{1}{2} [\rho(x_{n-1}, f x_n) + \rho(x_n, f x_{n-1})]\}
$$

\n
$$
= \lambda \max\{\rho(x_{n-1}, x_n), \rho(x_n, x_{n+1}), \rho(x_{n-1}, x_n),
$$

\n
$$
\frac{1}{2} [\rho(x_{n-1}, x_{n+1}) + \rho(x_n, x_n)]\}
$$

There is three cases

1. If

$$
M(x_{n-1},x_n)=\rho(x_n,x_{n+1})
$$

then

$$
\rho(x_n, x_{n+1}) \leq \lambda \rho(x_n, x_{n+1}) < \rho(x_n, x_{n+1})
$$

which is contradiction.

2. If

$$
M(x_{n-1},x_n)=\rho(x_{n-1},x_n)
$$

then

$$
\rho(x_n, x_{n+1}) \le \lambda \rho(x_{n-1}, x_n) < \rho(x_{n-1}, x_n)
$$

3. If

$$
M(x_{n-1}, x_n) = \frac{1}{2} [\rho(x_{n-1}, x_{n+1}) + \rho(x_n, x_n)],
$$

then

$$
\rho(x_n, x_{n+1}) \leq \frac{\lambda}{2} [\rho(x_{n-1}, x_{n+1}) + \rho(x_n, x_n)].
$$

from partial b-metric triangular property

$$
\frac{\lambda}{2} [\rho(x_{n-1}, x_{n+1}) + \rho(x_n, x_n)] \leq \frac{\lambda}{2} b [\rho(x_{n-1}, x_n) + \rho(x_n, x_{n+1})] - \frac{\lambda}{2} \rho(x_n, x_n) + \frac{\lambda}{2} \rho(x_n, x_n)
$$

= $\frac{\lambda}{2} b [\rho_{n-1} + \rho_n]$

where $\lambda \in [0, \frac{1}{\alpha}]$ $\frac{1}{2b}$), let $\alpha = \frac{\lambda}{2}$ $\frac{d\delta}{2}$, then $\rho_n \leq \alpha[\rho_{n-1} + \rho_n]$, where $\alpha \in [0, \frac{1}{4}]$ $\frac{1}{4}$). Therefore, $\rho_n \leq \beta \rho_{n-1}$, where $\beta = \frac{\alpha}{1-\alpha}$ $\frac{a}{1-\alpha}$. Repeating this process, we have $\rho_n \leq \beta^n$ $\rho(x_{n+1}, x_n) \leq \beta^n \rho(x_1, x_0).$ (2)

for all $n \geq 0$ There fore $\lim_{n \to \infty} \rho_n = 0$.

Now we will show that $\{x_n\}$ is a cauchy sequence.It follow from (1) that for $n, m \in Nn < m$

$$
\rho(x_n, x_m) \le b[\rho(x_n, x_{n+1}) + \rho(x_{n+1}, x_m)] - \rho(x_{n+1}, x_{n+1})
$$

\n
$$
\le b\rho(x_n, x_{n+1}) + b^2[\rho(x_{n+1}, x_{n+2}) + \rho(x_{n+2}, x_m)] - b\rho(x_{n+2}, x_{n+2})
$$

\n
$$
\le b\rho(x_n, x_{n+1}) + b^2\rho(x_{n+1}, x_{n+2}) + b^3\rho(x_{n+2}, x_{n+3}) + \dots + b^{m-n}\rho(x_{m-1}, x_m)
$$

 \sim

by using (2) we obtain

$$
\rho(x_n, x_m) \le b\beta^n \rho(x_1, x_0) + b^2 \beta^{n+1} \rho(x_1, x_0)
$$

+b³ β^{n+2} $\rho(x_1, x_0) + ... + b^{m-n} \beta^{m-1} \rho(x_1, x_0)$
 $\le b\beta^n [1 + b\beta + (b\beta)^2 + (b\beta)^3 + ...]\rho(x_1, x_0)$

$$
= \frac{b\beta^n}{1-b} \rho(x_1, x_0)
$$

since $\alpha = \frac{\lambda b}{2}$, $\lambda \in [0, \frac{1}{2b})$ and $\beta = \frac{\alpha}{1-\alpha}$. Then we have

$$
\lim_{n,m \to \infty} \rho(x_n, x_m) = 0
$$

Therefor $\{x_n\}$ is a Cauchy sequence in X. Since X is a complete metric space there exists $z \in X$ such that

$$
\lim_{n \to \infty} \rho(x_n, z) = \lim_{n, m \to \infty} \rho(x_n, x_m) = \rho(z, z) = 0
$$
\n(3)

we have to show z is a fixed point of f .

$$
\rho(z, fz) \le b[\rho(z, x_{n+1}) + \rho(x_{n+1}, fz)] - \rho(x_{n+1}, x_{n+1})
$$

\n
$$
\le b[\rho(z, x_{n+1}) + \rho(fx_n, fz)]
$$

\n
$$
\le b\rho(z, x_{n+1}) + 2\lambda \max{\rho(x_n, z), \rho(x_n, fx_n), \rho(z, fz)},
$$

\n
$$
\frac{1}{2}[\rho(x_n, fz) + \rho(z, fx_n)]
$$

$$
\leq b[\rho(z, x_{n+1}) + \lambda b \max{\rho(x_n, z), \rho(x_n, x_n), \rho(z, z),} \frac{1}{2} \rho[\rho(x_n, fz) + \rho(z, x_{n+1})]\}
$$

by using (3) and letting $n \to \infty$ we obtain

$$
\rho(z, fz) \le \lambda b \max\{0, 0, \rho(z, fz), \frac{1}{2} [\rho(z, fz)]
$$
\n
$$
\rho(z, fz) \le \lambda b \rho(z, fz) \text{ is implies } \rho(z, fz) < \rho(z, fz), \text{ a contradiction, so that } z = fz.
$$
\n
$$
\text{so } z \text{ is a unique fixed point of } f.
$$
\n
$$
(4)
$$

 $\rho(Tx,Ty) \leq \alpha M(x,y)$

Theorem 3.2 *let* f , $T: X \rightarrow X$ *be a self maps on partial b-metric space* (partial bmetric Space*)* such that for every *x*, *y* in *X* and $\alpha \in [0, \frac{1}{n}]$ $\frac{1}{2b}$

Where,

$$
M(x, y) = \max\{\rho(fx, fy), \rho(fx, Tx), \rho(fy, Ty), \frac{1}{2}[\rho(fx, Ty) + \rho(fy, Tx)]\}.
$$
\nIf $TX \subseteq fX$ and one of fX or TX is a complete subspace of X . Then f and T have a coincident point. In addition f and T have a unique common fixed point u in X and $\rho(u, u) = 0$, whenever f and T are weak^{*} compatible.

Proof. let x_0 be an arbitrary point in X. Since $TX \subseteq fX$, we can choose $x_1 \in X$ such that $fx_1 = Tx_0$, $fx_2 = Tx_1$ and $fx_3 = Tx_2$, continuing this process we have $f x_{n+1} = T x_n, n \ge 0$

Now if $fx_n = fx_{n+1}$, for some $n \in N$, then $fx_n = fx_{n+1} = Tx_n$, T and f have a coincidence point. Assume $fx_n \neq fx_{n+1}$ for every $n \in N$, for the sake of convenience assume

 $\rho_n = \rho(f x_n, f x_{n+1}).$ we claim that $\rho_n \leq \rho_{n-1}$. By using (5) we have $\rho(f x_n, f x_{n+1}) = \rho(T x_{n-1}, T x_n) \leq \lambda M(x_{n-1}, x_n)$ $M(x_{n-1}, x_n) = \max\{\rho(fx_{n-1}, fx_n), \rho(fx_{n-1}, Tx_{n-1}, \rho(fx_n, Tx_n),$ $\frac{1}{2}$ $\overline{\mathbf{c}}$ $=$

$$
\frac{1}{2}[\rho(f x_{n-1}, f x_{n+1}) + \rho(f x_n, f x_n)]
$$

= max{ $\rho(f x_{n-1}, f x_n), \rho(f x_n, f x_{n+1}),$
 $\frac{1}{2}[\rho(f x_{n-1}, f x_{n+1}) + \rho(f x_n, f x_n)]$ }

There is three cases.

1. If

$$
M(x_{n-1}, x_n) = \rho(f x_{n-1}, f x_n),
$$

then

$$
\rho(f x_n, f x_{n+1}) \le \lambda \rho(f x_{n-1}, f x_n)
$$

$$
< \rho(x_{n-1}, x_n).
$$

2. If

$$
M(x_{n-1},x_n)=\rho(fx_n,fx_{n+1}),
$$

then

$$
\rho(fx_n, fx_{n+1}) < \rho(fx_n, fx_{n+1})
$$

is contraction.

3. If

$$
M(x_{n-1}, x_n) = \frac{1}{2} [\rho(f x_{n-1}, f x_{n+1}) + \rho(f x_n, f x_n)]
$$

then

.

$$
\rho(f x_n, f x_{n+1}) \leq \frac{\lambda}{2} [\rho(f x_{n-1}, f x_{n+1}) + \rho(f x_n, f x_n)]
$$

from partial b-metric triangular property we have

$$
\frac{\lambda}{2} [\rho(f x_{n-1}, f x_{n+1}) + \rho(f x_n, f x_n)] \le
$$

\n
$$
\frac{\lambda}{2} (b[\rho(f x_{n-1}, f x_n) + \rho(f x_n, f x_{n+1}) - \rho(f x_n, f x_n)])
$$

\n
$$
+ \frac{\lambda}{2} \rho(f x_n, f x_n)
$$

\n
$$
\leq \frac{\lambda b}{2} [\rho_{n-1} + \rho_n].
$$

\nwhere $\lambda \in [0, \frac{1}{2b})$, then $\rho_n \leq \alpha [\rho_{n-1} + \rho_n]$, where $\alpha \in [0, \frac{1}{4})$.
\nTherefore $\rho_n \leq \beta \rho_{n-1}$, where $\beta = \frac{\alpha}{1-\alpha}$.
\nRepeating this process, we have
\n
$$
\rho_n \leq \beta \rho_0
$$

\n
$$
\rho(f x_{n+1}, f x_n) \leq \beta^n \rho(f x_1, f x_0) \text{ for all } n \geq 0, \text{ therefore }
$$

\n
$$
\lim_{m \to \infty} \rho_n = 0
$$

In view of theorem (3.1) { $f x_n$ } is a cauchy sequence in $f X$. Since $f X$ is a complete (Pb.M.S), we have $\{fx_n\}$ is converge to some point u in X, that

$$
\lim_{n\to\infty}fx_n=u
$$

Also the subsequences $\{fx_{n(k)}\}$ and $\{fx_{m(k)}\}$ are convergent to u. There exists $z \in X$, such that $u = fz$ $\rho(f x_n, u) = \lim_{h \to 0} \rho(f x_n, f x_m) = \rho(u, u) = 0$ (7)

Now, we claim $fz = Tz$ suppose, the contrary that $\rho(Tz, fz) > 0$. Then,

 $\rho(fz,Tz) \leq b[\rho(fz,Tx_{n+1}) + \rho(Tx_{n+1},Tz)] - \rho(Tx_{n+1},Tx_{n+1})$ $\leq b[\rho(fz,Tx_{n+1}) + \rho(Tx_{n+1},Tz)]$

from (5) we have

 $\rho(Tx_{n+1}, Tz) \leq \lambda M(x_{n+1}, z)$ $\leq \lambda \max\{\rho(fx_{n+1}, fz), \rho(fx_{n+1}, Tx_{n+1}), \rho(fz,Tz),\}$ $\mathbf 1$ $rac{1}{2}$ [\leq $\mathbf 1$ $rac{1}{2}$ [

Hence

$$
\rho(fz,Tz) \le b[\rho(fz,Tx_{n+1}) + b\lambda \max{\rho(fx_{n+1},fz)},
$$

$$
\rho(fx_{n+1},fx_{n+2}), \rho(fz,Tz), \frac{1}{2}[\rho(fx_{n+1},Tz), \rho(fz,fx_{n+2})].
$$

By using (5) and letting $n \to \infty$ we obtain

$$
\rho(fz, Tz) \le b\lambda \max\{0, 0, \rho(fz, Tz), \frac{1}{2}\rho(fz, Tz)\}\
$$

$$
\rho(fz, Tz) \le b\lambda \rho(fz, Tz) < \rho(fz, Tz),
$$

a contraction so $fz = Tz = u$ and z is coincidence point of f and T. Now to show that f and T have a common fixed point.

If f and T are weak* compatible then we have $T(fz) = f(Tz)$ whenever $fz = Tz = u$, this yields that $Tu = fu = u$

Hence u is a common fixed point of f and T

we claim that T and f have a unique common fixed point. Let u and v in X be two distinct fixed points of f and T , then

 $\rho(u, v) = \rho(Tu, Tv) \leq \alpha M(u, v)$ $\leq \alpha \rho(u,v) < \rho(u,v)$ a contradiction. Hence $\rho(u, v) = 0$ and $u = v$. Banach contraction principle in partial b-metric space. **Corollary 1** *[3] Let* (X, ρ) *be a complete partial b-metric space with* $b \ge 1$ *and let* $f: X \to X$ be a self map such that $\rho(fx, fy) \leq \alpha \rho(x, y)$, (8) for every x, y in X, where $\alpha \in [0,1)$. Then f posses a unique fixed point v in X and $\rho(v,v)=0.$

Corollary 2 *[7] Let* (X, ρ) *be a complete partial b-metric space with* $b \ge 1$ *and let* $f: X \rightarrow X$ be a self map such that

$$
\rho(fx, fy) \le \alpha[\rho(x, fy) + \rho(y, fx)]
$$

Every x y in X where $\alpha \in [0, \frac{1}{\alpha}]$ Then f possess a unique fixed point y in X and

for every x, y in X, where $\alpha \in [0, \frac{1}{2^n}]$ $\frac{1}{2b}$. Then f posses a unique fixed point v in X and $\rho(v,v)=0.$

Corollary 3 [3] Let (X, ρ) be a complete partial b-metric space with $b \ge 1$ and let $f: X \rightarrow X$ be a self map such that

 $\rho(fx, fy) \le \alpha \max\{\rho(x, y), \rho(x, fx), \rho(y, fy)\}\$ (10)

for every x, y in X, where $\alpha \in [0,1]$. Then f posses a unique fixed point v in X and $\rho(v,v)=0.$

with $b = 1$ in theorem (3.1) we can get corollary in partial b-metric space.

Corollary 4 *Let* (X, ρ) *be a complete* $(P.M.S)$ *and let* $f: X \rightarrow X$ *be a self map such*

that

$$
\rho(fx, fy) \le \alpha \max{\rho(x, y), \rho(x, fx), \rho(y, fy),}
$$

$$
\frac{1}{2}[\rho(x, fy) + \rho(y, fx)]
$$

for every x, y in X, where $\alpha \in [0,1]$. Then f posses a unique fixed point in X.

References

[1] S. Czerwik, Contraction mappings in b-metric spaces, a*cta Mathematica et Informatica Universitatis Ostraviensis 1* (1993) 5-11.

[2] S. G. Matthews, Partial metric topology, *annals of the New York Academy of Sciences 728* (1994) 183-197.

[3] S. Shukla, Partial b-metric spaces and fixed point theorems, *Mediterranean Journal of Mathematics 11* (2014) 703-711.

[4] L. B. Ciric, Generalized contractions and fixed-point theorems, *Publ. Inst. Math.(Beograd)(NS) 12* (1971) 19-26.

[5] A. M. Hashim, Fixed points of generalized weakly contractive maps in partial metric spaces, Jnanabha 46 (2016) 155-166.

[6] S. G. Matthews, Partial metric topology, *Annals of the New York Academy of Sciences 728* (1994) 183-197.

[7] J. Zhou, D. Zheng, G. Zhang, Fixed point theorems in partial b-metric spaces, *Appl. Math. Sci*. *12* (2018) 617-624.

[8] A. M. Hashim, New fixed point theorem for weak* compatible maps in rectangular metric space, Jnanabha 47 (2017) 51-62.

[9] M. Pacurar, A fixed point result for ϕ-contractions on b-metric spaces without the boundedness assumption, *Fasc. Math*. *43* (2010) 127-137.

[10] J. R. Roshan, N. Shobkolaei, S. Sedghi and M. Abbas, Common fixed point of four maps in b-metric spaces, *Hacettepe Journal of Mathemetics and Statistics 43* (2014) 613- 624.

[11] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, *Topology and its Applications 157* (2010) 2778-2785.

[12] A. M. Hashim, A. F. A. Ali, On New Coincidence and Fixed Point Results for Single-Valued Maps in Partial Metric Spaces, *Journal of Basrah Researches (Sciences) 43* (2017) 130-137.

حول بعض مبرهنات التقاط الصامدة في الفضاء ب - المتري الجزئي

أمل دمحم هاشم و حنين عدنان بكري قسم الرياضيات ، كلية العلوم ، جامعة البصرة ، البصرة ، العراق

المستخلص

يهدف هذا البحث الى استعراض ودراسة النقاط الصامدة المشتركه باستخدام مفهوم الفضاء الجزئي المتري وارتباطه بفئة الفضاء ب - المتري تحت الشرط الذي قدمه سيريك . النتائج التي حصلنا عليها هي تحسين وتوحيّد العديد من النتائج في مبر هنات النقطه الصامده وتعميم بعض النتائج الحديثه فّي الفّضاء ب- المتري الجزئي.