

Fixed points theorems for ciric' mappings in partial b-metric space

Amal M. Hashim and Haneen A. Bakry

Department of Mathematics, College of Sciences, University of Basrah, Basrah-Iraq

Doi 10.29072/basjs.20190102, Article inf., Received: 2/2/2019 Accepted: 23/3/2019 Published: 30/4/2019

Abstract

The main purpose of this paper, is to introduce and study the common fixed point by using the concept of partial metric space and combine with class of b-metric space under a contractive condition which introduce LJ-B. Ciric. Our results improve and unify a multitude of fixed point theorems and generalize some recent results in partial b-metric spaces.

Keywords : common fixed point, weak* compatible maps, Partial b-metric space

1. Introduction

In Czerwik [1] introduced the concept of b-metric space as a generalization of metric space and proved the Banach Contraction principle in b-metric space. In Matthew [2] introduced the notion of partial metric space as a generalization of metric space in which each object does not necessarily have a zero distance from itself.

Recently in Shukla [3] introduced the notion of partial b-metric space as a generalization of partial metric space and b-metric space, and he proved the fixed point theorem of Banach contraction principle and Kannan type mapping in partial b-metric space.

In this paper, we prove some fixed point in partial b-metric space for generalized contraction which introduced by Ciric [4] (see for instance ([5]-[12]) and reference thereof)

2. Preliminaries

we recall some definitions and notions of partial b-metric space.

Definition 2.1 [1] A *b*-metric on a nonempty set X is a self map $d: X^2 \rightarrow R^+$ satisfying the following conditions:

(bM1) d(x, y) = 0 if and only if x = y, for every x, y in X;

(bM2) d(x, y) = d(y, x),

(bM3) There exist a real number $b \ge 1$ such that $d(x, y) \le b[d(x, z) + d(z, y)]$, for every x, y, z in X;

the pair (X, d) is called a b-metric space (b.M.S) a generalization of usual metric space.

Definition 2.2 [6] A partial metric on a nonempty set X, is a self map $p: X^2 \to R^+$ satisfying the following axioms: (pM1) $x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y)$,(separation axiom) (pM2) $0 \le p(x, x) \le p(x, y)$, (non-negativity and small self-distance) (pM3) p(x, y) = p(y, x), (symmetry)

(pM4) $p(x,z) \le p(x,y) + p(y,z) - p(y,y)$, (triangular inequality)

for all x, y, z in X. then (X, p) is called a partial metric space for short (P. M. S) It is clearly that, every metric is a partial metric.

Definition 2.3 [7] Let X be a nonempty set, $b \ge 1$ be a given real number and let $\rho: X^2 \to R^+$ be a self map such that for every x, y, z in X, the following conditions hold: (pbM1) x = y if and only if $\rho(x, x) = \rho(x, y) = \rho(y, y)$, (pbM2) $\rho(x, x) \le \rho(x, y)$, (pbM3) $\rho(x, y) = \rho(y, x)$,

 $\rho(x, y) \le b[\rho(x, z) + \rho(z, y)] - \rho(z, z)$ Then the pair (X, z) is called Partial b Matrix Space (Pb M S) is

Then the pair (X, ρ) is called Partial b-Metric Space (Pb.M.S) for short. **Remark:**[7]

In Partial b-metric Space (X, ρ) , if $x, y \in X$ and $\rho(x, y) = 0$, then x = y but the converse may not be true.

we remark that every Partial b-Metric defines a b-Metric *d*, where $d(x, y) = 2\rho(x, y) - \rho(x, x) - \rho(y, y)$ for all $x, y, z \in X$.

Now we define the convergence of a sequence and Cauchy sequence in partial b-metric space.

Definition 2.4 [7] Let (X, ρ)be Partial b-metric spaces, Let {x_n} be any sequence in X, and x ∈ X. Then:
1. The {x_n} sequence is said to be convergent and convergent to x, if lim_{n→∞} ρ(x_n, x) = ρ(x, x)
2. The {x_n} sequence is said to be Cauchy sequence in (X, ρ), if lim_{n→∞} ρ(x_n, x_m)

exists and is finite;

3. (X, ρ) is said to be a complete partial b-metric space if for every Cauchy sequence $\{x_n\}$ in X, there exists $x \in X$ such that

$$\lim_{n,m\to\infty}\rho(x_n,x_m)=\lim_{n\to\infty}\rho(x_n,x)=\rho(x,x),$$

Note that in a partial b-metric space the limit of convergent sequence may not be unique[7].

(1)

Example 2.5 Let $X = R^+$, and $\rho: X^2 \to R^+$ be a self map defined by $\rho(x, y) = [\max\{x, y\}]^4 + |x - y|^4$

for all $x, y \in X$.

Then (X, ρ) is partial b-metric space with $b = 2^4 > 1$. but it is neither a b-metric nor partial metric space. Indeed, for any x > 0 we have $\rho(x, x) = x^p \neq 0$; therefore, ρ is not a b-metric on X. Also for x = 6, y = 2, z = 3 we have $\rho(x, y) = 6^4 + 4^4$ and $\rho(x, z) + \rho(z, y) - \rho(z, z) = 6^4 + 3^4 + 3^4 + 1^4 - 3^4 = 6^4 + 3^4 + 1^4$ so

 $\rho(x, y) > \rho(x, z) + \rho(z, y) - \rho(z, z)$ for all $b = 2^4$; therefore, ρ is not a partial metric on *X*.

Definition 2.6 [8] Two self map f and g of a non empty set X are called weakly compatible if they commute at coincidence points i.e,

fgz = gfz for every $z \in X$ whenever, fz = gz

Definition 2.7 [8] Two self map f and g of a non empty set X are called weakly* compatible if they commute at one of their coincidence points that is, if there exists a point $x \in X$ such that fx = Tx then fTx = Tfx

at weakly* compatible maps are more general than the weakly compatible maps for more details see,[8].

In (2014) Shukla [3] introduced the concept of partial b-metric space as a generalization of partial metric and b-metric spaces and proved Banach contraction principle in partial b-metric space.

3. Main Results

Theorem 3.1 Let (X, ρ) be a complete partial b-metric Space with $b \ge 1$ and $f: X \to X$ be a self map satisfying the following condition: $\rho(fx, fy)) \le \lambda M(x, y),$

where

$$M(x,y) = \max\{\rho(x,y), \rho(x,fx), \rho(y,fy), \frac{1}{2}[\rho(x,fy) + \rho(y,fx)]\}.$$

and $\lambda \in [0, \frac{1}{2b}), x, y \in X$.

Then, f posses a unique fixed point u and $\rho(u, u) = 0$.

Proof. First we have to show that if fixed point of f exists then it is unique. Let $u, v \in X$ be two distinct, fixed points of f, that is, $fu = u \neq fv = v$. It follow from (1) that

$$\rho(u,v) = \rho(fu,fv) \le \lambda \max\{\rho(u,v), \rho(u,fu), \rho(v,fv), \frac{1}{2}[\rho(u,fv) + \rho(v,fv), \frac{1}{2}[\rho(u,fv), \frac{1}{2}[\rho(u,fv), \frac{1}{2}[\rho(u,fv),$$

 $\rho(v, fu)$]}

$$= \lambda \max\{\rho(u, v), \rho(u, u), \rho(v, v), \frac{1}{2}[\rho(u, v) + \rho(v, u)]\}$$

= $\lambda \max\{\rho(u, v), 0, 0, \rho(u, v)\}$
 $\leq \frac{1}{2b}\rho(u, v) < \rho(u, v),$

a contradiction. Thus we have u = v.

Next, we have to show the existence of fixed point. Let $x_0 \in X$ be arbitrary, set $x_{n+1} = fx_n$. if $x_n = x_{n+1}$ for some $n \in N$, then $x_n = fx_n$, x_n is a fixed point of f.

suppose, further, that $x_n \neq x_{n+1}$ for all $n \in N$, for the sake of convenience assume that $\rho_n = \rho(x_n, x_{n+1})$. We claim that $\rho_n < \rho_{n-1}$.

$$\rho_{n} = \rho(x_{n}, x_{n+1}) = \rho(fx_{n-1}, fx_{n}) \leq \lambda M(x_{n-1}, x_{n})$$

$$\leq \lambda \max\{\rho(x_{n-1}, x_{n}), \rho(x_{n}, fx_{n}), \rho(x_{n-1}, fx_{n-1}),$$

$$\frac{1}{2}[\rho(x_{n-1}, fx_{n}) + \rho(x_{n}, fx_{n-1})]\}$$

$$= \lambda \max\{\rho(x_{n-1}, x_{n}), \rho(x_{n}, x_{n+1}), \rho(x_{n-1}, x_{n}),$$

$$\frac{1}{2}[\rho(x_{n-1}, x_{n+1}) + \rho(x_{n}, x_{n})]\}$$

There is three cases

1. If

$$M(x_{n-1}, x_n) = \rho(x_n, x_{n+1})$$

then

$$\rho(x_n, x_{n+1}) \le \lambda \rho(x_n, x_{n+1}) < \rho(x_n, x_{n+1})$$

which is contradiction.

2. If

$$M(x_{n-1},x_n)=\rho(x_{n-1},x_n),$$

then

$$\rho(x_n, x_{n+1}) \le \lambda \rho(x_{n-1}, x_n) < \rho(x_{n-1}, x_n)$$

3. If

$$M(x_{n-1}, x_n) = \frac{1}{2} [\rho(x_{n-1}, x_{n+1}) + \rho(x_n, x_n)],$$

then

$$\rho(x_n, x_{n+1}) \le \frac{\lambda}{2} [\rho(x_{n-1}, x_{n+1}) + \rho(x_n, x_n)].$$

from partial b-metric triangular property

$$\frac{\lambda}{2} [\rho(x_{n-1}, x_{n+1}) + \rho(x_n, x_n)] \le \frac{\lambda}{2} b[\rho(x_{n-1}, x_n) + \rho(x_n, x_{n+1})] - \frac{\lambda}{2} \rho(x_n, x_n) + \frac{\lambda}{2} \rho(x_n, x_n) = \frac{\lambda}{2} b[\rho_{n-1} + \rho_n]$$

where $\lambda \in [0, \frac{1}{2b})$, let $\alpha = \frac{\lambda b}{2}$, then $\rho_n \le \alpha [\rho_{n-1} + \rho_n]$, where $\alpha \in [0, \frac{1}{4})$. Therefore, $\rho_n \le \beta \rho_{n-1}$, where $\beta = \frac{\alpha}{1-\alpha}$. Repeating this process, we have $\rho_n \le \beta^n \rho_0$ $\rho(x_{n+1}, x_n) \le \beta^n \rho(x_1, x_0)$.

for all $n \ge 0$ There fore $\lim \rho_n = 0$.

Now we will show that $\{x_n\}$ is a cauchy sequence. It follow from (1) that for $n, m \in Nn < m$

$$\rho(x_n, x_m) \le b[\rho(x_n, x_{n+1}) + \rho(x_{n+1}, x_m)] - \rho(x_{n+1}, x_{n+1})$$

$$\le b\rho(x_n, x_{n+1}) + b^2[\rho(x_{n+1}, x_{n+2}) + \rho(x_{n+2}, x_m)] - b\rho(x_{n+2}, x_{n+2})$$

$$\le b\rho(x_n, x_{n+1}) + b^2\rho(x_{n+1}, x_{n+2}) + b^3\rho(x_{n+2}, x_{n+3}) + \dots + b^{m-n}\rho(x_{m-1}, x_m)$$

by using (2) we obtain

$$\rho(x_n, x_m) \le b\beta^n \rho(x_1, x_2) + b^2\beta^{n+1}\rho(x_1, x_2)$$

$$\rho(x_n, x_m) \le b\beta^n \rho(x_1, x_0) + b^2 \beta^{m+1} \rho(x_1, x_0) + b^3 \beta^{n+2} \rho(x_1, x_0) + \dots + b^{m-n} \beta^{m-1} \rho(x_1, x_0) \le b\beta^n [1 + b\beta + (b\beta)^2 + (b\beta)^3 + \dots] \rho(x_1, x_0)$$

(2)

(5)

$$= \frac{b\beta^{n}}{1-b}\rho(x_{1}, x_{0})$$

since $\alpha = \frac{\lambda b}{2}, \lambda \in [0, \frac{1}{2b})$ and $\beta = \frac{\alpha}{1-\alpha}$. Then we have
$$\lim_{n,m\to\infty}\rho(x_{n}, x_{m}) = 0$$

Therefor $\{x_n\}$ is a Cauchy sequence in X. Since X is a complete metric space there exists $z \in X$ such that

$$\lim_{n \to \infty} \rho(x_n, z) = \lim_{n, m \to \infty} \rho(x_n, x_m) = \rho(z, z) = 0$$
(3)

we have to show z is a fixed point of f.

$$\rho(z, fz) \le b[\rho(z, x_{n+1}) + \rho(x_{n+1}, fz)] - \rho(x_{n+1}, x_{n+1})$$

$$\le b[\rho(z, x_{n+1}) + \rho(fx_n, fz)]$$

$$\le b\rho(z, x_{n+1}) + 2\lambda \max\{\rho(x_n, z), \rho(x_n, fx_n), \rho(z, fz), \frac{1}{2}[\rho(x_n, fz) + \rho(z, fx_n)]\}$$

$$\leq b[\rho(z, x_{n+1}) + \lambda b \max\{\rho(x_n, z), \rho(x_n, x_n), \rho(z, z), \\ \frac{1}{2}\rho[\rho(x_n, fz) + \rho(z, x_{n+1})]\}$$

by using (3) and letting $n \to \infty$ we obtain

$$\rho(z, fz) \le \lambda b \max\{0, 0, \rho(z, fz), \frac{1}{2}[\rho(z, fz)]$$

$$\rho(z, fz) \le \lambda b \rho(z, fz) \text{ is implies } \rho(z, fz) < \rho(z, fz), \text{ a contradiction, so that } z = fz.$$
so z is a unique fixed point of f.
$$(4)$$

Theorem 3.2 *let* $f, T: X \to X$ *be a self maps on partial b-metric space* (partial bmetric Space) *such that for every* x, y *in* X *and* $\alpha \in [0, \frac{1}{2b})$ $\rho(Tx, Ty) \leq \alpha M(x, y)$

Where,

 $M(x, y) = \max\{\rho(fx, fy), \rho(fx, Tx), \rho(fy, Ty), \frac{1}{2}[\rho(fx, Ty) + \rho(fy, Tx)]\}.$ If $TX \subseteq fX$ and one of fX or TX is a complete subspace of X. Then f and T have a coincident point. In addition f and T have a unique common fixed point u in X and $\rho(u, u) = 0$, whenever f and T are weak* compatible.

Proof. let x_0 be an arbitrary point in X. Since $TX \subseteq fX$, we can choose $x_1 \in X$ such that $fx_1 = Tx_0$, $fx_2 = Tx_1$ and $fx_3 = Tx_2$, continuing this process we have $fx_{n+1} = Tx_n$, $n \ge 0$

Now if $fx_n = fx_{n+1}$, for some $n \in N$, then $fx_n = fx_{n+1} = Tx_n$, *T* and *f* have a coincidence point. Assume $fx_n \neq fx_{n+1}$ for every $n \in N$, for the sake of convenience assume

$$\begin{split} \rho_n &= \rho(fx_n, fx_{n+1}). \\ \text{we claim that } \rho_n &\leq \rho_{n-1}. \\ \text{By using (5) we have} \\ & \rho(fx_n, fx_{n+1}) = \rho(Tx_{n-1}, Tx_n) \leq \lambda M(x_{n-1}, x_n) \\ & M(x_{n-1}, x_n) = \max\{\rho(fx_{n-1}, fx_n), \rho(fx_{n-1}, Tx_{n-1}, \rho(fx_n, Tx_n), \\ & \frac{1}{2}[\rho(fx_{n-1}, Tx_n) + \rho(fx_n, Tx_{n-1})]\} \\ &= \max\{\rho(fx_{n-1}, fx_n), \rho(fx_{n-1}, fx_n), \rho(fx_n, fx_{n+1}), \end{split}$$

(6)

$$\frac{1}{2} [\rho(fx_{n-1}, fx_{n+1}) + \rho(fx_n, fx_n)]\}$$

= max{ $\rho(fx_{n-1}, fx_n), \rho(fx_n, fx_{n+1}), \frac{1}{2} [\rho(fx_{n-1}, fx_{n+1}) + \rho(fx_n, fx_n)]\}.$

There is three cases.

1. If

$$M(x_{n-1}, x_n) = \rho(f x_{n-1}, f x_n),$$

then

$$\rho(fx_n, fx_{n+1}) \le \lambda \rho(fx_{n-1}, fx_n)$$

< $\rho(x_{n-1}, x_n)$.

2. If

$$M(x_{n-1},x_n) = \rho(fx_n,fx_{n+1}),$$

then

$$\rho(fx_n, fx_{n+1}) < \rho(fx_n, fx_{n+1})$$

is contraction.

3. If

$$M(x_{n-1}, x_n) = \frac{1}{2} [\rho(fx_{n-1}, fx_{n+1}) + \rho(fx_n, fx_n)],$$

then

•

$$\rho(fx_{n}, fx_{n+1}) \le \frac{\lambda}{2} \left[\rho(fx_{n-1}, fx_{n+1}) + \rho(fx_{n}, fx_{n}) \right]$$

from partial b-metric triangular property we have

$$\begin{aligned} \frac{\lambda}{2} [\rho(fx_{n-1}, fx_{n+1}) + \rho(fx_n, fx_n)] &\leq \\ \frac{\lambda}{2} (b[\rho(fx_{n-1}, fx_n) + \rho(fx_n, fx_{n+1}) - \rho(fx_n, fx_n)]) \\ &+ \frac{\lambda}{2} \rho(fx_n, fx_n) \\ &\leq \frac{\lambda b}{2} [\rho_{n-1} + \rho_n]. \end{aligned}$$
where $\lambda \in [0, \frac{1}{2b})$, then $\rho_n \leq \alpha [\rho_{n-1} + \rho_n]$, where $\alpha \in [0, \frac{1}{4})$.
Therefore $\rho_n \leq \beta \rho_{n-1}$, where $\beta = \frac{\alpha}{1-\alpha}$.
Repeating this process, we have
 $\rho_n \leq \beta \rho_0$
 $\rho(fx_{n+1}, fx_n) \leq \beta^n \rho(fx_1, fx_0) \text{ for all } n \geq 0$, therefore
 $\lim_{n \to \infty} \rho_n = 0$

In view of theorem $(3.1){fx_n}$ is a cauchy sequence in fX. Since fX is a complete (Pb.M.S), we have ${fx_n}$ is converge to some point u in X, that

$$\lim_{n \to \infty} f x_n = u$$

Also the subsequences
$$\{fx_{n(k)}\}\$$
 and $\{fx_{m(k)}\}\$ are convergent to u .
There exists $z \in X$, such that $u = fz$
 $\rho(fx_n, u) = \lim_{n,m\to\infty} \rho(fx_n, fx_m) = \rho(u, u) = 0$
(7)
we claim $fz = Tz$ suppose the contrary that $\rho(Tz, fz) > 0$

Now, we claim fz = Tz suppose, the contrary that $\rho(Tz, fz) > 0$. Then,

$$\rho(fz, Tz) \le b[\rho(fz, Tx_{n+1}) + \rho(Tx_{n+1}, Tz)] - \rho(Tx_{n+1}, Tx_{n+1}) \\ \le b[\rho(fz, Tx_{n+1}) + \rho(Tx_{n+1}, Tz)]$$

from (5) we have

$$\begin{split} \rho(Tx_{n+1}, Tz) &\leq \lambda M(x_{n+1}, z) \\ &\leq \lambda \max\{\rho(fx_{n+1}, fz), \rho(fx_{n+1}, Tx_{n+1}), \rho(fz, Tz), \\ \frac{1}{2}[\rho(fx_{n+1}, Tz), \rho(fz, Tx_{n+1})] \\ &\leq \lambda \max\{\rho(fx_{n+1}, fz), \rho(fx_{n+1}, fx_{n+2}), \rho(fz, Tz), \\ \frac{1}{2}[\rho(fx_{n+1}, Tz), \rho(fz, fx_{n+2})]. \end{split}$$

Hence

$$\rho(fz,Tz) \le b[\rho(fz,Tx_{n+1}) + b\lambda\max\{\rho(fx_{n+1},fz), \rho(fx_{n+1},fx_{n+2}), \rho(fz,Tz), \frac{1}{2}[\rho(fx_{n+1},Tz), \rho(fz,fx_{n+2})].$$

By using (5) and letting $n \to \infty$ we obtain

$$\rho(fz,Tz) \le b\lambda \max\{0,0,\rho(fz,Tz),\frac{1}{2}\rho(fz,Tz)\}$$

$$\rho(fz,Tz) \le b\lambda\rho(fz,Tz) < \rho(fz,Tz),$$

a contraction so fz = Tz = u and z is coincidence point of f and T. Now to show that f and T have a common fixed point.

If f and T are weak* compatible then we have T(fz) = f(Tz) whenever fz = Tz = u, this yields that Tu = fu = u

Hence u is a common fixed point of f and T

we claim that T and f have a unique common fixed point. Let u and v in X be two distinct fixed points of f and T, then

 $\rho(u, v) = \rho(Tu, Tv) \le \alpha M(u, v)$ $\le \alpha \rho(u, v) < \rho(u, v)$

a contradiction. Hence $\rho(u, v) = 0$ and u = v.

Banach contraction principle in partial b-metric space.

Corollary 1 [3] Let (X, ρ) be a complete partial b-metric space with $b \ge 1$ and let $f: X \to X$ be a self map such that

$$\rho(fx, fy) \le \alpha \rho(x, y),$$

for every x, y in X, where $\alpha \in [0,1)$. Then f posses a unique fixed point v in X and $\rho(v, v) = 0$.

Corollary 2 [7] Let (X, ρ) be a complete partial b-metric space with $b \ge 1$ and let $f: X \to X$ be a self map such that

 $\rho(fx, fy) \le \alpha [\rho(x, fy) + \rho(y, fx)]$ for every x, y in X, where $\alpha \in [0, \frac{1}{2h}]$. Then f posses a unique fixed point v in X and (9)

 $\rho(v,v)=0.$

Corollary 3 [3] Let (X, ρ) be a complete partial b-metric space with $b \ge 1$ and let $f: X \to X$ be a self map such that

 $\rho(fx, fy) \le \alpha \max\{\rho(x, y), \rho(x, fx), \rho(y, fy)\}$ (10)

for every x, y in X, where $\alpha \in [0,1]$. Then f posses a unique fixed point v in X and $\rho(v, v) = 0$.

with b = 1 in theorem (3.1) we can get corollary in partial b-metric space.

(8)

Corollary 4 *Let* (X, ρ) *be a complete* (P.M.S) *and let* $f: X \to X$ *be a self map such*

that

$$\rho(fx, fy) \le \alpha \max\{\rho(x, y), \rho(x, fx), \rho(y, fy), \frac{1}{2}[\rho(x, fy) + \rho(y, fx)]\}$$

for every x, y in X, where $\alpha \in [0,1]$. Then f posses a unique fixed point in X.

References

[1] S. Czerwik, Contraction mappings in b-metric spaces, acta Mathematica et Informatica Universitatis Ostraviensis 1 (1993) 5-11.

[2] S. G. Matthews, Partial metric topology, *annals of the New York Academy of Sciences* 728 (1994) 183-197.

[3] S. Shukla, Partial b-metric spaces and fixed point theorems, *Mediterranean Journal of Mathematics 11* (2014) 703-711.

[4] L. B. Ciric, Generalized contractions and fixed-point theorems, *Publ. Inst. Math.*(*Beograd*)(*NS*) 12 (1971) 19-26.

[5] A. M. Hashim, Fixed points of generalized weakly contractive maps in partial metric spaces, Jnanabha 46 (2016) 155-166.

[6] S. G. Matthews, Partial metric topology, *Annals of the New York Academy of Sciences* 728 (1994) 183-197.

[7] J. Zhou, D. Zheng, G. Zhang, Fixed point theorems in partial b-metric spaces, *Appl. Math. Sci.* 12 (2018) 617-624.

[8] A. M. Hashim, New fixed point theorem for weak* compatible maps in rectangular metric space, Jnanabha 47 (2017) 51-62.

[9] M. Pacurar, A fixed point result for ϕ -contractions on b-metric spaces without the boundedness assumption, *Fasc. Math.* 43 (2010) 127-137.

[10] J. R. Roshan, N. Shobkolaei, S. Sedghi and M. Abbas, Common fixed point of four maps in b-metric spaces, *Hacettepe Journal of Mathemetics and Statistics 43* (2014) 613-624.

[11] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, *Topology and its Applications 157* (2010) 2778-2785.

[12] A. M. Hashim, A. F. A. Ali, On New Coincidence and Fixed Point Results for Single-Valued Maps in Partial Metric Spaces, *Journal of Basrah Researches* (*Sciences*) 43 (2017) 130-137.

حول بعض مبر هنات التقاط الصامدة في الفضاء ب - المتري الجزئي

أمل محمد هاشم وحنين عدنان بكري قسم الرياضيات ، كلية العلوم ، جامعة البصرة ، البصرة ، العراق

المستخلص

يهدف هذا البحث الى استعراض ودراسة النقاط الصامدة المشتركه باستخدام مفهوم الفضاء الجزئي المتري وارتباطه بغئة الفضاء ب - المتري تحت الشرط الذي قدمه سيريك . النتائج التي حصلنا عليها هي تحسين وتوحيد العديد من النتائج في مبر هنات النقطه الصامده وتعميم بعض النتائج الحديثه في الفضاء ب- المتري الجزئي.