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Abstract  

In this article, we present the numerical investigation for incompressible Newtonian 

laminar flow through a conical channel. We apply the Galerkin finite element method 

for solving the governing equations of such a problem. Usually, the governing 

equations for incompressible Newtonian flows are represented by conservation laws 

for mass and momentum, which are given in the cylindrical coordinates 

(axisymmetric) in the current study. Interestingly, the pressure drop through the 

channel is provided under a variety of Reynolds numbers. The objective of this study 

is to assess the influence of various effective parameters on the level of the pressure 

drop. Further, the effect of the boundary maximum axial velocity that is imposed at 

the inlet upon the solution reveals some novel features. To evaluate the influence of 

the conical half-angle at the recirculation region on solutions behavior, this study is 

achieved with a different set of angles. We found that the conical half-angle was 

notably affecting the critical level of pressure drop. Moreover, the response of the 

fluid in both shear and extensional is quite interesting, which represents one of the 

more important aspects of this study. 
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1. Introduction 

A numerical investigation of incompressible Newtonian fluid flow through a conical channel is 

introduced in the present study. Navier-Stokes equations are the partial differential equations 

that describe the fluid flow phenomena.  For Newtonian fluids, the relation between the stress 

tensor and the rate of deformation tensor can be expressed by a linear relation, while that does 

not hold for non-Newtonian fluids [1–3]. This linear relation is considered as the simplest 

relationship that describes the relationship between these tensors. Furthermore, the flow is 

selected to be laminar and isothermal. In laminar flow, the fluid moves and travels smoothly in 

the channel. Various studies of the solution for incompressible Newtonian equations have been 

occurred in literature (for example see: [1,4–6]). Geometrically, the flow channel is selected to 

have a converging mid-section to satisfy some desired results. 

The converging flow may be introduced as a geometrical concept mediates in-between the 

uniform and sudden contraction flow [7]. The conical flow can be defined as a uniform flow 

with a section of gradual contraction. The axisymmetric conical channel is considered in the 

present study, it is selected as its wide-spreading in the practical fields. The conical flow is 

classified as one of the essential internal flows. Many accomplished types of research include 

converging flow had been published (see for example: [8–12]). Mostly, the objective of the 

converging flow studies is to give an essential understanding or to expand an experimental basis 

so the empirical predictions can be done [13]. The characteristics of the geometry have a huge 

effect on the flow characteristics. The geometric parameters of the conical flow: the half-angle 

( ), the ratio between the length to the diameter of the upstream section, and the ratio between 

upstream to downstream diameters are considered as characteristics of the conical geometry 

[14,15]. Under normal circumstances, the geometric parameters varying leads to a significant 

impact on mass flow rate [15]. Also, changes in the static pressure and drag force are correlated 

to the changes of geometric parameters [15]. In the conical flow, the flow generates regions of 

near-sink flow for specific sets of Reynolds numbers [16,17]. 

In this study, a numerical simulation based on Galerkin finite element method is achieved to 

treat incompressible Newtonian flow through an axisymmetric conical channel. The novelty in 
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this study the temporal convergence-rate of the system solution that is taken to be steady-state 

and the effect of many factors on such a problem with a new geometry pattern, which did not 

address by researchers previously. In this context, Poiseuille (PS) flow along a two-dimensional 

axisymmetric conical channel, under isothermal conditions is studied. The main results of the 

current study focus on the convergence rate of velocity and pressure solutions. The relationship 

between pressure and Reynolds number is shown as well. The effect of boundary maximum 

axial velocity ((uz)max) at the inlet of the channel on the level of Re is also investigated. Also, the 

impact of varying conical half-angle on pressure drop and flow velocity is considered. The fluid 

response under shear and extensional deformation conditions is considered. In this context, the 

effect of Reynolds number and conical half-angle on stress response is studied. 

In the next section, the mathematical modeling of the motion of the Newtonian flows will be 

presented. These equations are introduced in the cylindrical coordinates. Since these equations 

must be studied numerically, the numerical method will be characterized in section 3. The 

problem discretization and the related numerical results will be explained in sections 4 and 5, 

respectively. 

2. Mathematical modeling 

The system of the differential equation that governs the incompressible Newtonian flow 

consists of two essential equations: continuity equation and momentum equation [3,18]. The 

dimensionless form with omitted body forces of the balance equations under isothermal 

conditions may be expressed as [3,19]: 

 

 

where,  is the velocity vector,  is the pressure, and  is the Reynolds number 

[3,20–22], where,  is the fluid density,  is the scale length, and  is the scaled velocity. In the 

cylindrical coordinates, the incompressible equations (1)-(2) are given in the components form 

as [19,23–26]: 

(1) 

(2) 
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  (3) 

r-direction 

  

θ-direction 

  

z-direction 

 (6) 

3. Numerical method 

To solve the related governing equations (3)-(6), Galerkin finite element method (GFEM) is 

utilized. The starting point of this approach is to find the weak form of the equation by using 

appropriate weight functions. Firstly, by multiplying via appropriate weight functions for both: 

continuity and momentum equations, integrating over a typical domain; and substituting assumed 

approximate solutions, so the matrix form of these equations is given by: 

  (7) 

 (8) 

 

 

(9) 

(10) 

(4) 

(5) 
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where,  and 

, and  are coefficients which are found by the assumed approximate solutions. The 

quadratic shape functions that are proposed for velocity components are defined as: 

 

 

  

 

 

 

In contrast, a convenient linear shape function is proposed for pressure, such that 

 

where , and  are local triangular coordinates. 

Thus, the mass matrix is given by: 

 

The convective matrices are given by: 

 

 

 

 

 

The diffusion matrices are given by: 

 

 

(11) 

(12) 
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The gradient matrices are given by: 

 

 

 

 

such that, A is the area of the triangular element, , 

 

 

such that,  and ,  are coefficients defined in terms of coordinates of triangular 

element. 

, 
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Now, by using the Newton-Raphson method to treat the nonlinear part, then by using the 

backward Euler scheme to treat the time-derivative term, the desired result of these processes is 

given by: 

 

 

 

 

 

where, 

, 

 

 

 

such that,  is reduced to the form  

4. Problem discretization 

In this article, the problem of the flow is selected to be a cone connected to upstream and 

downstream cylinders. In this context, a Poiseuille flow through a 2D-axisymmetric conical 

channel 1:0.5-cone ( ) considered, for an isothermal, incompressible 

(16) 

(15) 

(14) 

(13) 
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Newtonian fluid. The radius of the upstream tube is selected to be double of the downstream 

tube width. Figure 1(a) displayed the schematic diagram of such a benchmark flow problem. 

Four triangular finite element meshes, M1, M2, M3, and M4 are used with various half-angles 

, respectively, as shown in Figure 1(b). For more details, meshes and 

angles characteristics are presented in Table 1. 

Table 1: Characteristics of the achieved meshes. 

 

Nodes 

 L L Elements  Mesh

 

 

 (a) 

 

Figure 1: (a) Geometry of the channel, (b) Finite element meshes. 

Exact solution: For fully developed shear axisymmetric fluids through a circular upstream 

channel, the solution in velocity can be computed analytically under specific conditions: steady, 

incompressible, axisymmetric and laminar flow, with neglected body forces. In this case, for the 

    Total Boundary 

1M 0.3 1 128 297 80 

2M 0.5 1 128 297 80 

3M 0.9 1 128 297 80 

4M 1.4 1 128 297 80 

( b ) 

Mesh Elements 1L 2L 
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axis of symmetry  = 0 and top wall , we have the dimensional velocity solution in the 

form: 

   (17) 

where,  is the radius of the channel and is the maximum velocity in the fully 

developed flow area, which is defined as: 

  (18) 

such that,  is the length of the channel and  where,  and  are the pressure at 

the outlet and inlet of the channel, respectively. 

Boundary conditions (BCs): The setting of BCs of the present channel problem with  

is laid as follows: 

1. The inflow conditions are chosen to be those corresponding to the analytical expression 

(17) for fully-developed axial velocity, and zero radial velocity. 

2. A no-slip boundary condition is applied on the top and bottom walls of the channel. 

3. Zero radial velocity and zero pressure are applied to the outlet of the channel. 

4. Vanished radial velocity along the axisymmetric line. 

5. Numerical results 

The numerical results are computed for Newtonian flow through the axisymmetric conical 

channel. In this representation, the study shows tolerance criteria that is taken here as 10−6 and 

typical ∆t is O(10−3). The findings concerned with the pressure drop and the relationship 

between the pressure and the Reynolds number (Re). In addition, the results concerned with the 

rate of error convergence of the problem components. Moreover, the effects of some factors, 

such that the boundary maximum axial velocity and conical half-angle are considered. 
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History plots of the relative error increment norms in velocity and pressure are illustrated in 

Figure 2 for Re = 1. Generally, the findings reflect a lower rate of convergence for the pressure 

compared to that is extracted for velocity under the same rate of time-stepping convergence. 

 

mesh2 , M= 1Re Figure 2: Rate of convergence;  

In Figure 3 fields plot are presented for pressure with Re={0.001, 1, 10, 20}. As to be expected, 

a maximum level of pressure is displayed at the inlet of the channel, and then decreases 

gradually by going to the cone exit. Also, the level of pressure rises as Re increases to reach a 

high level with maxima around 564.072 units with Re = 25. 

 

mesh.2 Mvariation, -ReFigure 3: Pressure fields:  

Pressure drop is plotted in Figure 4(a) with Re= {0.001, 1, 10, 20} along the axis of symmetry. 

The profiles displayed that there is a significant effect of Re-variation on the pressure 
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distribution over the channel. In this context, the level of pressure drop raised as Re increased, 

reaching a peak of 501.274 with Re = 20. Further detail and illustration of this situation, are 

provided in Figure 4(b), which gives the pressure as a function of Re. 

 (a) (b) 

 

Figure 4: (a) Pressure drop profiles on the axis of symmetry, (b) Pressure as a function of Re, 

mesh.2 M 

The profiles of the axial velocity in fully developed flow at different zones z ={2, 4, 5, 6} are 

presented in Figure 5. The numerical result is provided for Re = 1, in two positions; die-section 

and downstream cone. The axial velocity profiles show parabolic flow structure for both zones, 

with obviously increasing in the level of velocity whenever we are trending to the cone exit, 

approaching the maxima of 8 units. 

 

 (a) (b) 
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section, (b) -mesh, (a) Die2 M= 1, Re channel axial velocity profiles, -Figure 5: Cross

Converging-section. 

In addition to the above, the influence of Re on the axial velocity along the die-section and 

downstream cone to the four different Re values {0.001, 1, 10, 20} is presented in Figure 6. The 

results show that, the insignificant effect of Re-variation on the axial velocity occurred at the 

upstream cone, while a notable impact of Re-variation appeared at the downstream cone. 

Generally, one can conclude that, the level of velocity gradually diminished as Re increased. 

 

 

 

 

 

 

 

 

 (a) (b) 
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= 2, z section at -mesh, (a) Die2 Mvariation, -Reprofiles,  channel axial velocity-Figure 6: Cross

(b) Converging-section at z = 5. 

Shear data is plotted in Figure 7(a), with shear stress (τrz) and shear-rate (Γ) along the surface of 

the cone at four sample Re values. The findings reveal that, the peak shear deformation rate (Γ) 

at Re = 20 is 57.94 units near the contact region between the converging section and upstream 

section; this value decreases to around {48.35, 41.61, 34.46} for Re ={10, 5, 1}, respectively. In 

contrast, there is a change of sign in τrz is observed compared to Γ, with the least negative level 

for τrz is -52.77 units, which is given with the largest Re level. In addition, in both cases, a 

constant level appeared at the die-section, which reflects a pure shear. 

In contrast, extensional normal stress (τzz) and strain-rate (Σ) profiles are shown in Figure 7(b) 

along the axis of symmetry, corresponding to the same setting of Re. The results reflect an 

opposite feature compared to shear data, where the maximum level of τzz and Σ occurred with 

the smallest Re level beyond the converging zone. Overall, larger normal stress (τzz) is noted for 

Re = 1 (of 16.68 units), which is almost two times larger than that for strain-rate (Σ). Here, 

almost 29% and 31% increase in peak values of τzz and Σ, respectively, from Re = 1 to Re = 20. 

that is applied in the inlet of the tube on the level of pressure drop is max )zuThe effect of (

provided in Figure 8 with fixed Re=1. As anticipated, the results illustrated that the level of 

pressure drop in the inlet of the channel increased as the inlet velocity raised. 

 

(a) 
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(b) 

 

variation, -Rerate (Σ); -), and strainzzτrate (Γ), normal stress (-), shearrzτFigure 7: Shear stress (

mesh, (a) Along a top wall, (b) Along the axis of symmetry.2 M 

The findings of pressure drop give an increasing in pressure values of: O(100%) from (uz)max 

= 1 to (uz)max = 2. 

 

Figure 8: Pressure drop profiles on axis of symmetry; (uz)max = {1,2}, Re = 1, M2 mesh. 
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Effect of conical angle: One of the important results in the current study is the impact of the 

half-angle for which separation first appears at the cone exit, where the emergence of a 

recirculation zone will disturb the flow in the cone. To detect the consequence conical half-

angle (α) influence on the pressure drop level, the simulation is achieved to the four sample 

values of angles . For all cases, the pressure drop along the axis of 

symmetry and the top wall of the conical channel is displayed in Figure 9 for fixed Re = 1. The 

findings reveal that, for both regions, as half-angle levels increase the level of pressure 

decreases, where maximum value occurs around 234 units with α = 20◦, which is consistent with 

the results are reported by [11]. In addition, at the top surface of the channel one can observe 

that the effect of changing the angle on the pressure, where an overshoot in the level of pressure 

with α = 45◦ occurs (see Figure 9(b)). 

 

 (a) (b) 

 

Figure 9: Pressure drop profiles, Re = 1, α-variation, (a) Axis of symmetry, (b) Top wall. 

Moreover, the impact of varying conical half-angle on the axial velocity at the cone section is 

presented in Figure 10, for Re = 1 and different settings . Here the profiles 

reflect that, decreasing of the conical half-angle leads to a little increasing of flow velocity 

level. 
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 (a) (b) 

 

(c) 

 

Figure 10: Cross-channel axial velocity profiles; Re = 1, α-variation, (a) Die-section at z = 3, (b) 

Converging-section at z = 5, (c) Contact point. 

The study of the range of shear-rates (Γ) and shear stress (τrz) can be provided with a complete 

feature about the deformation history and response of the fluid under consideration. Figure 11 

displays the shear-rate (Γ) and shear stress profiles over the top wall for the same settings of α 

and Re = 1, 5. The constant shear-rate and shear stress levels appeared through the die-section, 

and then followed by a noticeable increase. The profiles exhibit a modest difference in the 

levels of shear-rate with variation in conical half-angle (α), reaching a peak value of around 

43.49 units with Re = 5 and α = 45◦. Similar behavior is observed in τrz but in the opposite sign, 

where over the converging section, τrz increases as α rises. Overall, the shear data reflects that; 

there is an insignificant effect of α-variation on the shear stress and shear-rate. 
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mesh.2 Mvariation, -α5, ,= 1Re rate (Γ) along a top wall; -) and shearrzτFigure 11: Shear stress ( 

For the same set of parameters, the strain-rate (Σ) and normal stress (τzz) along the axis of 

symmetry are provided in Figure 12. Constant normal stress and strain-rate levels occurred 

along the die-section and cone exit, with an increase and then a sharp decrease over that 

converging section. From the profiles, one observes an increase in the level of normal stress and 

strain-rate as Re decreases. Also, the results reflect a significant effect of α on the peak of 

extensional stresses, where the maximum level of τzz and Σ are relevant with a larger angle. 

Here, the profiles recorded the maximum level of τzz of around 13.14 units with Re = 1 and α = 

45◦. The same trend is observed for Σ, where the peak strain-rate is 20 units at Re = 1 and α = 

45◦. Generally, along with the change in the conical half-angle, the value of strain-rate and 

normal stress will be affected significantly over the converging region. 
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-α5, ,= 1Re rate (Σ) along the axis of symmetry; -) and strainzzτFigure 12: Normal stress (

mesh.2 Mvariation,  

Conclusion 

In this study, the numerical simulation for laminar incompressible Newtonian fluid is achieved 

based on the Galerkin finite element method in the cylindrical coordinates system. With the 

selected set of parameters, we have commenced with a Reynolds number (Re). The influence of 

the inlet boundary condition on the behavior of axisymmetric incompressible Newtonian flow is 

studied as well. The simulation is conducted for four different meshes with various half-angles 

. The effect of the boundary maximum axial velocity ((uz)max) at the inlet 

of the channel on the level of pressure drop is investigated. In this status, we detected that there 

is a significant effect of (uz)max upon the level of pressure, such that was generally found that the 

level of pressure reduces as (uz)max decreases. In the case of Re, one can see that the maximum 

Re was around 122 with (uz)max = 1. Furthermore, the influence of Re-variation on the axial 

velocity at two regions of the channel; die-section and cone-section is investigated. Ultimately, 

this study covered the effect of the conical half-angle on the pressure drop levels. Here, the 
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results showed that, the high level of pressure occurred with the small half-angle (α = 20◦). The 

influence of the Reynolds number and conical half-angle on the shear stress, shear-rate, normal 

stress, and strain-rate is considered. In all cases, a constant response of stresses occurred over 

the die section, while a notable change in the level of stresses appeared through the converging 

region. In general, we may pass the comment that; there is a significant effect of Re and α on 

the level of stresses. 
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 دراسة عددية لتدفق ممتد خلال بنى هندسية مخروطية متناظرة: طريقة العناصر المنتهية 

 المسلماوي حسن  علاء      احمد ناجي عبد الحسن 

 قسم الرياضيات، كلية العلوم، جامعة البصرة

 البصرة، العراق 

 

 الخلاصة

قناة مخروطية. نحن نطبق طريقة   القابل للإنضغاط خلال  النيوتوني غير  الطبقي  للتدفق  دراسة عددية  نقدم  البحث،  في هذه 

النيوتونية غير   للتدفقات  الحاكمة  المعادلات  العادة،  المسألة. في  لمثل هذه  الحاكمة  المعادلات  المنتهية لحل  للعناصر  غالركن 

القابلة للإنضغاط تمُثل بقوانين الحفظ للكتلة والعزم، والتي تعُطى بالإحداثيات الإسطوانية )المتناظرة( في الدراسة الحالية. من  

المثير للإهتمام، تتم دراسة إنخفاض الضغط خلال القناة تحت قيم متنوعة من عدد رينولدز. الهدف من هذه الدراسة هو تقييم  

التي   القصوى الحدودية  المحورية  السرعة  تأثير  الضغط. بالإضافة لذلك،  إنخفاض  تأثير عوامل مؤثرة مختلفة على مستوى 

الزاوية تأثير  لتقييم  الجديدة.  النتائج  بعض  يكشف  الحل  على  القناة  مدخل  في  إعادة  -تفُرض  منطقة  عند  المخروطية  النصفية 

الزاوية إن  لقد وجدنا  الزوايا.  لمجموعة مختلفة من  الدراسة  هذه  اجراء  تم  الحل،  المخروطية  -الدوران على سلوك  النصفية 

المائع في الحالتين القصي والممتد  تؤثر بصورة ملحوظة على المستوى الحرج لإنخفاض الضغط. بالإضافة لذلك، إستجابة 

 تكون مثيرة للإهتمام، والتي تمثل واحدة من الجوانب المهمة لهذه الدراسة. 

 

 


