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Abstract

In this article, we present the numerical investigation for incompressible Newtonian
laminar flow through a conical channel. We apply the Galerkin finite element method
for solving the governing equations of such a problem. Usually, the governing
equations for incompressible Newtonian flows are represented by conservation laws
for mass and momentum, which are given in the cylindrical coordinates
(axisymmetric) in the current study. Interestingly, the pressure drop through the
channel is provided under a variety of Reynolds numbers. The objective of this study
IS to assess the influence of various effective parameters on the level of the pressure
drop. Further, the effect of the boundary maximum axial velocity that is imposed at
the inlet upon the solution reveals some novel features. To evaluate the influence of
the conical half-angle at the recirculation region on solutions behavior, this study is
achieved with a different set of angles. We found that the conical half-angle was
notably affecting the critical level of pressure drop. Moreover, the response of the
fluid in both shear and extensional is quite interesting, which represents one of the

more important aspects of this study.

Article inf.

Received:
1/12/2020

Accepted
22/12/2020
Published
31/12/2020

Keywords:

Conical flow,
Finite element
method, Galerkin
method, Navier-
Stokes equations,
Newtonian fluid

0]€] This article is an open access asticle distributed under 399
the terms and conditions of the Creative Commeons Attrbution-
NonCommercial 4.0 International (CC BY-NC 4.0 License)
(http:/ /creativecommons orgs licenses ‘bv-ne /4.0,




Basrah Journal of Science Vol. 38(3) 399-421, 2020

1. Introduction

A numerical investigation of incompressible Newtonian fluid flow through a conical channel is
introduced in the present study. Navier-Stokes equations are the partial differential equations
that describe the fluid flow phenomena. For Newtonian fluids, the relation between the stress
tensor and the rate of deformation tensor can be expressed by a linear relation, while that does
not hold for non-Newtonian fluids [1-3]. This linear relation is considered as the simplest
relationship that describes the relationship between these tensors. Furthermore, the flow is
selected to be laminar and isothermal. In laminar flow, the fluid moves and travels smoothly in
the channel. Various studies of the solution for incompressible Newtonian equations have been
occurred in literature (for example see: [1,4-6]). Geometrically, the flow channel is selected to

have a converging mid-section to satisfy some desired results.

The converging flow may be introduced as a geometrical concept mediates in-between the
uniform and sudden contraction flow [7]. The conical flow can be defined as a uniform flow
with a section of gradual contraction. The axisymmetric conical channel is considered in the
present study, it is selected as its wide-spreading in the practical fields. The conical flow is
classified as one of the essential internal flows. Many accomplished types of research include
converging flow had been published (see for example: [8-12]). Mostly, the objective of the
converging flow studies is to give an essential understanding or to expand an experimental basis
so the empirical predictions can be done [13]. The characteristics of the geometry have a huge
effect on the flow characteristics. The geometric parameters of the conical flow: the half-angle

(zx), the ratio between the length to the diameter of the upstream section, and the ratio between

upstream to downstream diameters are considered as characteristics of the conical geometry
[14,15]. Under normal circumstances, the geometric parameters varying leads to a significant
impact on mass flow rate [15]. Also, changes in the static pressure and drag force are correlated
to the changes of geometric parameters [15]. In the conical flow, the flow generates regions of

near-sink flow for specific sets of Reynolds numbers [16,17].

In this study, a numerical simulation based on Galerkin finite element method is achieved to

treat incompressible Newtonian flow through an axisymmetric conical channel. The novelty in

0]€] This article is an open access asticle distributed under 400
the terms and conditions of the Creative Commeons Attrbution-
NonCommercial 4.0 International (CC BY-NC 4.0 License)
(http:/ /creativecommons orgs licenses ‘bv-ne /4.0,




Basrah Journal of Science Vol. 38(3) 399-421, 2020

this study the temporal convergence-rate of the system solution that is taken to be steady-state
and the effect of many factors on such a problem with a new geometry pattern, which did not
address by researchers previously. In this context, Poiseuille (PS) flow along a two-dimensional
axisymmetric conical channel, under isothermal conditions is studied. The main results of the
current study focus on the convergence rate of velocity and pressure solutions. The relationship
between pressure and Reynolds number is shown as well. The effect of boundary maximum
axial velocity ((uz)max) at the inlet of the channel on the level of Re is also investigated. Also, the
impact of varying conical half-angle on pressure drop and flow velocity is considered. The fluid
response under shear and extensional deformation conditions is considered. In this context, the

effect of Reynolds number and conical half-angle on stress response is studied.

In the next section, the mathematical modeling of the motion of the Newtonian flows will be
presented. These equations are introduced in the cylindrical coordinates. Since these equations
must be studied numerically, the numerical method will be characterized in section 3. The
problem discretization and the related numerical results will be explained in sections 4 and 5,
respectively.

2. Mathematical modeling

The system of the differential equation that governs the incompressible Newtonian flow
consists of two essential equations: continuity equation and momentum equation [3,18]. The
dimensionless form with omitted body forces of the balance equations under isothermal
conditions may be expressed as [3,19]:

V.u =0 1)
du 1 1 (2)

— 4t ubPu=——"p+—Fu,
ﬂt+u u Re p+Re u

where, u is the velocity vector, p is the pressure, and Re = pUL/u is the Reynolds number
[3,20-22], where, p is the fluid density, L is the scale length, and U is the scaled velocity. In the

cylindrical coordinates, the incompressible equations (1)-(2) are given in the components form
as [19,23-26]:
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3. Numerical method

To solve the related governing equations (3)-(6), Galerkin finite element method (GFEM) is
utilized. The starting point of this approach is to find the weak form of the equation by using
appropriate weight functions. Firstly, by multiplying via appropriate weight functions for both:
continuity and momentum equations, integrating over a typical domain; and substituting assumed

approximate solutions, so the matrix form of these equations is given by:

[T1[0,]+ ([Q]+ [T.D[U,]+ ([55(Ue)] + [DeD) [Ue] — — [E1[F] = [0], (7)
[71[Us] — [Da1[U,] + ([Q1+ [T.]+ [5, () DIVe] — = [FI[P] = [0], (8)
(71[0.]+ [Q1v,] - - [£1[¢] = o] ©
(E71+ [EDW,] + [FI] W] + £ 1[w.] = [o], (10)
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where,  [@] = [V(U.)] + [Yo(Ug)] + [¥2(U2)] + [H,] + [He] + [H] + [D,]. and
U,,Ug, U_, and P are coefficients which are found by the assumed approximate solutions. The

quadratic shape functions that are proposed for velocity components are defined as:

-wl- -LE—LJ_LZ_L:[LH- 1 ﬂ ﬂ _1 D _1 [ Li 1

v, L3—LyLy—L,yL, 01 0 —1 —1 o] L3

Wl _|,z_ _ oo 1 0o -1 =1,z (11)
= |L5— L3l —L3L;|= L3

N R

1'l'E’IIE 4L2L3 ':I ﬂ ﬂ ':I ﬂ 4 LELE

.l L 4L3L4 i [ LiLs

In contrast, a convenient linear shape function is proposed for pressure, such that

®y Ly
Al
o Lj

Ly, L, L

3 . .
where ,and are local triangular coordinates.

Thus, the mass matrix is given by:
[T] = 2nr, A[K][M] [M"][KT].

The convective matrices are given by:
[V, (U] = 2nn, A[K][M][MT][KT][U,][NT][BT][K"],

[Ye(Ug)] = [0].

[V, (U.)] = 2mn, A[K][M][MT][KT][U,][NT][CT][KT],

[5, (U] = 2mA[K][M][MT][KT][U, ] [MT][K"],

[Se(Ug)] = — 2mA[K][M][MT][KT][Ug][MT][KT].
The diffusion matrices are given by:

[4,] = 2nr,, A— [KIIBINIIN](B7] (K]

[Hg] = [0],
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[4.] = 2nr,, A—[KI[CIN]N][CTI[KT),
[0,]= ~2mA— [KI[MIN"][87][K"]

[Dg] = [0],

(7,1 = 22— A [KIMI[MI[KT)

m

The gradient matrices are given by:
[F] = 2mr, A[K][B][N][N"],

[Fa] = [0],
[F.] = 2mr, A[K][C][N][N"],
[F.] = 2mA[N][M"][K"],

T =§(T1 + 7 +7"3:]

such that, A is the area of the triangular element, :

100 —1 0 -1 [ L7 ]
01 0 -1 -1 0 5 L
_0o0o 1 0o -1 -1 _ | L3 .
000 0 4 0 L L. 3
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(26, 0 07 (2% 0 0 1
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1] 0 0o 2f 110 0 2y
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such that, i and ¥;, i,j = 1,2,3 are coefficients defined in terms of coordinates of triangular

element.
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Now, by using the Newton-Raphson method to treat the nonlinear part, then by using the
backward Euler scheme to treat the time-derivative term, the desired result of these processes is

given by:
. [aR, ]| [9R, | (3R, ] [dR, |
(1[0, ] + _au,l,_ (AU, ]+ a—;ﬁ_ [AUg] + _aui_ [AU.]+ _a—;_ [AP] = —[R,], (13)
. (3R, [dR, | E:A (3R, ] 14
(){0e)-+ 5] 01+ (52 vl + {52 a1 + | 52| 102 = 2] 4
(3R, ] (3R, | [dR,] (3R, ] (15)
[r1[o.] + _auj_ (AU, ]+ a_ui. [AUg] + _aui_ [AU.]+ _a—;_ [aP] = —[R3],
(16)
71081 + |G taui 1+ [S5¢ el + |02 et + [ S5 tap1 = ~1m.)
where,

Ry = ([Q1+ [T.DIU,] + [Se (U)I[Up] — - [F[P],

RZ = ([Q] + [TE] + [Sr(Urj]:] [UE].I

R, = [QI[U,1 - - [£1IP)
R, = (E71+ [E DI, + [£711,),

such that, [@] is reduced to the form: [@] = [V.(U,)] + [Y.(U.)] + [H,] + [H.] + [D,].

4. Problem discretization

In this article, the problem of the flow is selected to be a cone connected to upstream and
downstream cylinders. In this context, a Poiseuille flow through a 2D-axisymmetric conical

channel 1:0.5-cone (hy = 1,h, = 0.5) considered, for an isothermal, incompressible
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Newtonian fluid. The radius of the upstream tube is selected to be double of the downstream
tube width. Figure 1(a) displayed the schematic diagram of such a benchmark flow problem.
Four triangular finite element meshes, M1, M2, Ms, and My are used with various half-angles

a = 607,457,307, 20, respectively, as shown in Figure 1(b). For more details, meshes and

angles characteristics are presented in Table 1.

Table 1: Characteristics of the achieved meshes.

Nodes
entsL L Mesh Li L. Elements 1qtq Boundary Mesh
M1 03 1 128 297 80
M 05 1 128 297 80
M3 09 1 128 297 80
My 14 1 128 297 80
(a)
Wall AE(‘nxlltaxct point
e e i \ Conical channel (b)
I\/\lg)l((l)lg};n V 4 Axis;immctric M, :_; z e
. b o ine £ == ; =
Wall = /V’ = =
Wall LI . » .!7’1‘1}91',1‘\‘;[[1 : M, : = =
—_— hl ~— L, —
— -

Figure 1: (a) Geometry of the channel, (b) Finite element meshes.

Exact solution: For fully developed shear axisymmetric fluids through a circular upstream
channel, the solution in velocity can be computed analytically under specific conditions: steady,
incompressible, axisymmetric and laminar flow, with neglected body forces. In this case, for the
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axis of symmetry » = 0 and top wall » = h,, we have the dimensional velocity solution in the

form:

T_Z
U, = (uz]max (1 - h_z)’ (17)
1
where, h, is the radius of the channel and (u.),,,.iS the maximum velocity in the fully

developed flow area, which is defined as:

kY Ap
(uz]max = iﬁi

(18)

such that, [ is the length of the channel and Ap = p, — p; where, p, and p, are the pressure at
the outlet and inlet of the channel, respectively.
Boundary conditions (BCs): The setting of BCs of the present channel problem with b; = 1

is laid as follows:
1. The inflow conditions are chosen to be those corresponding to the analytical expression
(17) for fully-developed axial velocity, and zero radial velocity.
2. A no-slip boundary condition is applied on the top and bottom walls of the channel.
3. Zero radial velocity and zero pressure are applied to the outlet of the channel.

4. Vanished radial velocity along the axisymmetric line.
5. Numerical results

The numerical results are computed for Newtonian flow through the axisymmetric conical
channel. In this representation, the study shows tolerance criteria that is taken here as 107 and
typical At is O(10°%). The findings concerned with the pressure drop and the relationship
between the pressure and the Reynolds number (Re). In addition, the results concerned with the
rate of error convergence of the problem components. Moreover, the effects of some factors,

such that the boundary maximum axial velocity and conical half-angle are considered.
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History plots of the relative error increment norms in velocity and pressure are illustrated in
Figure 2 for Re = 1. Generally, the findings reflect a lower rate of convergence for the pressure

compared to that is extracted for velocity under the same rate of time-stepping convergence.

10'

Error

1 1 ] ] 1 ] ]
50 100 150 200 250 300 350
Time-Steps

Figure 2: Rate of convergence; Re = 1, M2 mesh

In Figure 3 fields plot are presented for pressure with Re={0.001, 1, 10, 20}. As to be expected,
a maximum level of pressure is displayed at the inlet of the channel, and then decreases
gradually by going to the cone exit. Also, the level of pressure rises as Re increases to reach a
high level with maxima around 564.072 units with Re = 25.

P: 00 286 57.1 85.7 114.3 142.9 171.4 200.0

s

N
| W]

Figure 3: Pressure fields: Re-variation, M2 mesh.
Pressure drop is plotted in Figure 4(a) with Re= {0.001, 1, 10, 20} along the axis of symmetry.
The profiles displayed that there is a significant effect of Re-variation on the pressure
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distribution over the channel. In this context, the level of pressure drop raised as Re increased,
reaching a peak of 501.274 with Re = 20. Further detail and illustration of this situation, are
provided in Figure 4(b), which gives the pressure as a function of Re.

(b) (a)

600

500 | .
400 |- .

o. 300

200 F 4
I Re=0.001
Re=1
Re=10
Re=20

100

=
-
m
w
-
wn
)

Figure 4: (a) Pressure drop profiles on the axis of symmetry, (b) Pressure as a function of Re,

M2 mesh.

The profiles of the axial velocity in fully developed flow at different zones z ={2, 4, 5, 6} are
presented in Figure 5. The numerical result is provided for Re = 1, in two positions; die-section
and downstream cone. The axial velocity profiles show parabolic flow structure for both zones,
with obviously increasing in the level of velocity whenever we are trending to the cone exit,

approaching the maxima of 8 units.
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0.4

=5
z=6

Figure 5: Cross-channel axial velocity profiles, Re = 1, M2 mesh, (a) Die-section, (b)

Converging-section.

In addition to the above, the influence of Re on the axial velocity along the die-section and

downstream cone to the four different Re values {0.001, 1, 10, 20} is presented in Figure 6. The

results show that, the insignificant effect of Re-variation on the axial velocity occurred at the

upstream cone, while a notable impact of Re-variation appeared at the downstream cone.

Generally, one can conclude that, the level of velocity gradually diminished as Re increased.
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1 0.5
[ ———— Re=0.001]  reoon
| ——— Re=1 1 —_— Re=l
08 Re=10 - 04l ———— Re=10
I NP Re=20 ! — Re20 ]
0.6} - 03| -
1 9 B
04 - 0z} 4
0zt - o1 .
0 L 1 1 1 1 1 1 1 [l 1
0 0.5 1 15 2 1 2 3 4 5 6 7 8
u, u,

Figure 6: Cross-channel axial velocity profiles, Re-variation, Mz mesh, (a) Die-section at z = 2,

(b) Converging-section at z = 5.

Shear data is plotted in Figure 7(a), with shear stress (zr;) and shear-rate (I') along the surface of
the cone at four sample Re values. The findings reveal that, the peak shear deformation rate (I)
at Re = 20 is 57.94 units near the contact region between the converging section and upstream
section; this value decreases to around {48.35, 41.61, 34.46} for Re ={10, 5, 1}, respectively. In
contrast, there is a change of sign in zr; is observed compared to I', with the least negative level
for 7, is -52.77 units, which is given with the largest Re level. In addition, in both cases, a
constant level appeared at the die-section, which reflects a pure shear.
In contrast, extensional normal stress (zzz) and strain-rate (X) profiles are shown in Figure 7(b)
along the axis of symmetry, corresponding to the same setting of Re. The results reflect an
opposite feature compared to shear data, where the maximum level of 7;; and ¥ occurred with
the smallest Re level beyond the converging zone. Overall, larger normal stress (zz;) is noted for
Re = 1 (of 16.68 units), which is almost two times larger than that for strain-rate (X). Here,
almost 29% and 31% increase in peak values of 7;; and X, respectively, from Re = 1 to Re = 20.
The effect of (u;)max that is applied in the inlet of the tube on the level of pressure drop is
provided in Figure 8 with fixed Re=1. As anticipated, the results illustrated that the level of

pressure drop in the inlet of the channel increased as the inlet velocity raised.
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Re=5
————— Re=10

(b)

18

15

12

Figure 7: Shear stress (zr;), shear-rate (I'), normal stress (zz;), and strain-rate (X); Re-variation,

M2 mesh, (a) Along a top wall, (b) Along the axis of symmetry.

The findings of pressure drop give an increasing in pressure values of: O(100%) from (uz)max

=1to (uz)max = 2.

300
L ————— Re-l, (0) "1 |
250 ———— Rel,(u)=2
200 .
150+ -
100 F -
50 {

0 P - 1 P - 1 1
0 1 2 3 4 5 6

412

tht terms a.nd conditions of the Creative Commons Attnbution-
MNonCommercial 4.0 International (CC BY-NC 4.0 license)
(hitp://creativecommons. org/licenses ‘by-nc/4.0/).



Basrah Journal of Science Vol. 38(3) 399-421, 2020

Effect of conical angle: One of the important results in the current study is the impact of the
half-angle for which separation first appears at the cone exit, where the emergence of a
recirculation zone will disturb the flow in the cone. To detect the consequence conical half-
angle (a) influence on the pressure drop level, the simulation is achieved to the four sample

values of angles & = 607,457,307,20". For all cases, the pressure drop along the axis of

symmetry and the top wall of the conical channel is displayed in Figure 9 for fixed Re = 1. The
findings reveal that, for both regions, as half-angle levels increase the level of pressure
decreases, where maximum value occurs around 234 units with o = 20°, which is consistent with
the results are reported by [11]. In addition, at the top surface of the channel one can observe
that the effect of changing the angle on the pressure, where an overshoot in the level of pressure

with o = 45° occurs (see Figure 9(b)).

(b) (a)
250 250
200+ - 200 ]
150 N a=20 deg 1 150 B =20 deg 1
=30 deg L a=30 d

[ o Ay 8

————— a=45 deg = ==== o=45deg
100 - a=60 deg 1 100 a=60 deg -
50+ - 50 -

L | ] 1 1 1 L 1 1 L 1 -
% 1 2 3 1 5 6 0 1 2 3 ) 5 3
Z z

Figure 9: Pressure drop profiles, Re = 1, a-variation, (a) Axis of symmetry, (b) Top wall.

Moreover, the impact of varying conical half-angle on the axial velocity at the cone section is
presented in Figure 10, for Re = 1 and different settings @ = 607, 457,307, 20°. Here the profiles

reflect that, decreasing of the conical half-angle leads to a little increasing of flow velocity

level.
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(b) (a)
1 0.5
| ] I — a=20deg |
a=20 deg I ————— o=30deg |
osl 0=30 deg | 04k TRy - a=45 deg |
N - o=45 deg | — o=60deg |
a=60 deg | I |
0.6 - 0.3 r .
(™ I | Bt

0.4 ] 0.2 -
0zf . 0.1 -

0 1 1 —_— 1 | 1 TREEN 1 1 1
0.5 1 1.5 2 2.5 1 2 3 4 5 6 7 8

u u

(©)

7z=3.5, a=20 deg
z=4, 0=30 deg |
7=4.5, 0=45 deg

z=4.7, a=60 deg |

Figure 10: Cross-channel axial velocity profiles; Re = 1, a-variation, (a) Die-section at z = 3, (b)

Converging-section at z = 5, (c) Contact point.

The study of the range of shear-rates (I') and shear stress (zr;) can be provided with a complete
feature about the deformation history and response of the fluid under consideration. Figure 11
displays the shear-rate (I') and shear stress profiles over the top wall for the same settings of «
and Re = 1, 5. The constant shear-rate and shear stress levels appeared through the die-section,
and then followed by a noticeable increase. The profiles exhibit a modest difference in the
levels of shear-rate with variation in conical half-angle («), reaching a peak value of around
43.49 units with Re = 5 and a = 45°. Similar behavior is observed in zr; but in the opposite sign,
where over the converging section, zr; increases as « rises. Overall, the shear data reflects that;

there is an insignificant effect of a-variation on the shear stress and shear-rate.
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50 50
Re=1, a=20 deg I
0 Re=1, a=30 deg a 40 Re=5, a=20 deg
""" Re=1, a=45 deg [ ———— Re=5, a=30 deg
———— Re=La=60deg N | | _____ Re=5, 0=45 deg
30 301 —————— Re=5, a=60 deg
—
20 20
10+ 10
0 1 1 1 1 1 0 1 1 1 1 1
0 1 2 3 4 5 [ 0 1 2 3 4 5 6
Zz z
16 r ] 16
8 i_ 8F
0 i— =
. —— ResS,a=20
e Re=1, 0=20 deg B Res, Z—snx:
-1. o= | , 0=
e Re=l, =38 deg A Re=5, =45 deg
-6 ===== Re=1, a=45 deg 16 Re=5, a=60 deg
[ ——— Re=l1, a=60 deg 5
24 24
32k 32
L 1 L 1 1 L 1 1 1
4“0 1 2 3 4 5 6 40 1 2 3
z z

Figure 11: Shear stress (zr;) and shear-rate (I') along a top wall; Re = 1,5, a-variation, M2 mesh.

For the same set of parameters, the strain-rate (X) and normal stress (zzz) along the axis of
symmetry are provided in Figure 12. Constant normal stress and strain-rate levels occurred
along the die-section and cone exit, with an increase and then a sharp decrease over that
converging section. From the profiles, one observes an increase in the level of normal stress and
strain-rate as Re decreases. Also, the results reflect a significant effect of a on the peak of

extensional stresses, where the maximum level of 7;; and X are relevant with a larger angle.

Here, the profiles recorded the maximum level of z;; of around 13.14 units with Re = 1 and «

45°. The same trend is observed for X, where the peak strain-rate is 20 units at Re = 1 and «
45°. Generally, along with the change in the conical half-angle, the value of strain-rate and

normal stress will be affected significantly over the converging region.
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Figure 12: Normal stress (zzz) and strain-rate (X) along the axis of symmetry; Re = 1,5, a-

variation, M2 mesh.
Conclusion

In this study, the numerical simulation for laminar incompressible Newtonian fluid is achieved
based on the Galerkin finite element method in the cylindrical coordinates system. With the
selected set of parameters, we have commenced with a Reynolds number (Re). The influence of
the inlet boundary condition on the behavior of axisymmetric incompressible Newtonian flow is
studied as well. The simulation is conducted for four different meshes with various half-angles

a = 60,457,307, 20". The effect of the boundary maximum axial velocity ((U;)max) at the inlet

of the channel on the level of pressure drop is investigated. In this status, we detected that there
is a significant effect of (u;)max upon the level of pressure, such that was generally found that the
level of pressure reduces as (U;)max decreases. In the case of Re, one can see that the maximum
Re was around 122 with (u;))max = 1. Furthermore, the influence of Re-variation on the axial
velocity at two regions of the channel; die-section and cone-section is investigated. Ultimately,

this study covered the effect of the conical half-angle on the pressure drop levels. Here, the
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results showed that, the high level of pressure occurred with the small half-angle (« = 20%). The
influence of the Reynolds number and conical half-angle on the shear stress, shear-rate, normal
stress, and strain-rate is considered. In all cases, a constant response of stresses occurred over
the die section, while a notable change in the level of stresses appeared through the converging
region. In general, we may pass the comment that; there is a significant effect of Re and a on

the level of stresses.
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