

Synthesis and Study of Calcination Effect of Zinc Ferrite on the Structure and Morphology of Nanoparticles

We'am S. Malik^{1,2,*}, Zainab S. Sadeq²

1. Department of Physics, Collage of Education, University of Al-Qadisiyah, Iraq

2. Department of Physics, Collage of Science, University of Baghdad, Baghdad, Iraq.

Corresponding author: E-mail: sweamami79@gmail.com

Doi 10.29072/basjs.2020211

Abstract

Three precursor solutions of spinel zinc ferrite were successfully fabricated via a rapid Article inf. and simple route (microwave combustion), followed by calcination at a temperature Received: 04/7/2020 of 500 °C for three hours. The raw materials used in the preparation these spinel samples were ferric and zinc nitrate salts, while glycine was used as fuel. The phase Accepted purity and crystal lattice parameters were estimated via XRD. The particle size and 18/8/2020 morphologies for synthesized powdered samples are shown by field emission-Published scanning electron microscopy images (FE-SEM), Fourier transform infrared 31/8/2020 spectroscopy (FT-IR) were us to study the vibration mode in synthesized spinel **Keywords**: ferrite. The results for synthesized samples showed that there is a remarkable change ferrite, in phase purity, crystal lattice parameter, particle size, and morphologies with calcinations, calcination. Results of XRD refer to cubic spinel - structure with space group Fd3m. nanoparticles The average crystallite size increases when Glycine -to-nitrate ratio is decreased. It is increase from 15.8 nm to 26.53 nm and from 23.03 nm to 28.16 nm for the assynthesized samples and calcinated at 500 °C, respectively. As well, the results of XRD show that the average lattice constants are changed from (8.407 to 8.391) [°]A and then they increase from (8.391 to 8.427) °A for the synthesized samples. However, the calcination results in an increase in average crystallite size and average lattice constant. FE-SEM image indicated that the particles of zinc ferrite possess

shape symmetry and uniformity.

1. Introduction

The compounds that formed by iron oxides and transition metal oxides in order to obtained as powder or ceramic bodies with ferromagnetic-type properties known as ferrites [1]. Various factors can be influence of Structural, magnetic, and optical properties of ferrites of which, size of particle, preparation method, type of dopant ions [2], chemical compositions, as well as sintering temperature [3]. Among various ferrites spinel – structure ferrite with the general formula (MFe₂O₄) became an interesting categories of technological materials due to their an important properties of which, excellence chemical stability, high saturation magnetization, So them suitable for magnetic, mechanical, and catalytic applications [4] In spinel- structure metal cations are located between A -site (tetrahedral) and B- site (octahedral) formed through the oxygen ions in a unit cell. This distribution influence on the magnetic properties of MFe₂O₄, that could be controlled by crystallite size and thermal treatment [5] Zinc ferrite is a soft magnetic spinel structure that possesses high resistivity excellent magnetic properties, as well as high thermal and chemical stabilities [6] [7]. It is one of the iron based cubic spinel space group S.G. Fd3m, [8] Recently, Zinc ferrite has also received great interest because of the magnetic, adsorption, and photo-catalysis applications [9] Spinel structure was synthesized with various methods among these, chemical precipitation method [10] hydrothermal methods [11] conventional heating (CHM) method [12] in here zinc ferrite was synthesized via microwavecombustion routs. Several features of this route among those clean, morphology 0f particles are in control, short time reactions [13]; cost effectiveness of this route is lower than the other wet chemical routes for synthesis ferrites [14].

2. Experimental

Nitrate salts of Zinc and iron as metal sources and fuel via (Zn^{+2}/Fe^{+3}) is taken as the stoichiometric ratio (1:2) respectively were mixed to each other and dissolved via stoichiometrical amount of distilled water then it stirred by a magnetic stirrer has a max. temperature (100 0 C) model manufactured at China. for 20 min .Later stoichiometric amount of fuel (C₂H₅NO₂) was added within the mixed via continuous stirring until dark brown color was formed. The mixture was placed in crucible then transferred to a_microwave oven with microwave irradition power 1000 Watt . in the microwave combustion route. The solution via fuel boiled and subjected to dehydration accompanied by decomposition and starting released gases among those, CO₂, NO₂, and N₂. If the solution reached the combustion point, it became

solid. Finally, filter papers were used to resulting compound filtered. Product was washed via ethanol and distilled water for (5) times in order to remove the residual initial materials, dried at (70 °C) for two hours and allowed to cool in the oven itself. Finely mortar was used to ground the result powder for (3min.) in order to obtain fine powders then this fine powders were calcinated at (500 °C) for 3h.

3- Characterization techniques

After preparation of samples, Characterization for the synthesized powdered samples is an essential step In order to understand of synthesis protocol and attest the successfulness of them. In this search techniques that used for the characterization of nanoparticles are powder X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM) and Fourier transform-infrared spectroscopy (FT-IR). The phase composition and crystalline structure of ferrites was studied using Shimadzu diffract meter model XRD 6000 (manufactured at Japan) at university of Baghdad / college of education (Ibn- Al.Haitham), Iraq .Device employs Cu Ka ($\lambda = 1.1548$ Å). A proportional counter with an operating current of 30 mA and voltage of 40 kV was used. The Surface morphology of the samples was recorded with Field Emission- Scanning Electron Microscopes (FE-SEM) with various magnification powers. They detectors at university of Al – Basrah /college of science, Iraq as well as university of Tehran, Iran. (FT-IR) spectrum was recorded on a (Shimadzu-8400S spectrometer) at the range of (400 cm⁻¹– 4000 cm⁻¹) at university of Al-Qadisiyah /college of chemical engineering, Iraq.

4 - Results and Discussion

4-1- Structural and morphological characterization

Figure 1 manifest XRD patterns for as- synthesized spine Zn Fe_2O_4 ferrite samples , while Figure 2 manifest XRD patterns for spine Zn Fe_2O_4 ferrites that followed by calcination at 500 °C for 3h

Figure 1: XRD pattern of as- synthesized normal spine ZnFe₂O₄ ferrite by Microwave – assisted combustion method with different glycine-to-nitrate ratio

Figure 2: XRD pattern of the synthesized normal spine ZnFe₂O₄ ferrite by Microwave – assisted combustion route with different glycine-to-nitrate ratio followed by calcination at 500 °C for 3h.

For as-synthesized spine ZnFe₂O₄ ferrite in the Figure (4-1) I when the glycine-to-nitrate ratio 0.66 crystalline phase structure is observed... peaks at 20 values of 18.31°, 30.04°, 35.37°, 36.89°, 42.94°, 53.24°, 56.72°, 62.33° and 73.61° belong to the (111), (220), (311), (222), (400), (422), (511), (440) and (533) planes of spinel zinc ferrite, respectively that can be referred to the cubic- spinel structured matches via the standard (JCPDS card No. 22-1012) of ZnFe₂O₄ ferrite. There are Two extra peaks at 31.84°, and 47.61°, which belong to (220) (400) plane of ZnO. Good crystalline phase structure can be observed for S2 at Glycine-to-nitrate ratio 0.5 as shown

in the figure (4-1) I. As Glycine-to-nitrate ratio decrease to 0.33, regular variation in the crystalline phase structure can be observed for S3 with tiny trace in phase structure ZnO compared with the other synthesized samples S1 and S2. Two extra peaks prepared at 42.06° and 61.02.03°, that belong to, (422) and (511) plane of ZnO. Results showed that calcination at (500°C) In Figure (4-1) II. The diffraction peaks become sharper and narrower. This refers to the increase of the crystallinity. The full width half maximum of highest peak decreases with calcination at this temperature this mean that increased in the particle size of the samples with calcination. Peaks of impurities with high crystallization were observed in the patterns in the fig. (4-1)II. The increase in the average crystallite size after calcination is because of the increase in nanoparticles size and/or small nanoparticles merge to form bigger particles [15]. The values of the average crystallite size D of the samples as well as average lattice constant a were calculated from the higher intensity of (311) plane within XRD profile, in accordance with relations (1) and (2) respectively [16].

 $D=(0.89 \lambda)/(\beta \cos \theta)....(1)$

 $a = d_{hkl} \sqrt{h^2 + k^2 + l^2 \dots (2)}$

 λ - represent XRD wavelength that used (0.154 nm), β - is represent the Full Width at Half Maximum of plane (311) and θ - is represent the Bragg's angle. All these parameter were written as in Table 1.

Table 1: The values of the average crystallite size and crystal lattice parameter for synthesized
samples of the spine Zn Fe ₂ O ₄ ferrite by Microwave – assisted combustion method
with different glycine-to-nitrate ratio befor and after calcination.

	Sample	Glycine/nitrate ratio	Lattice Parameter a (°A)	Crystallite Size D(nm) (XRD)
S 1	as-synthesized	0.66	8.407	15.8
	Calcinate at 500°C for 3h		8.440	23.03
S2	as-synthesized	0.50	8.391	23.70
	Calcinate at 500°C for 3h		8.440	27.05
S 3	as-synthesized	0.33	8.427	26.53
	Calcinate at 500°C for 3h		8.434	28.16

One can be observed From above table that increase of average crystallite size when Glycine – to-nitrate ratio is decreased. It is increase from 15.8 nm to 26.53 nm and from (23.03 to 28.16) for the as-synthesized samples and calcinated at 500 °C respectively. One also can be observed From saim table that, the average lattice constants is changed from (8.407 to 8.391)°A and then it increase from (8.391 to 8.427)°A for as -synthesized samples. An increase in lattice constant can be explained depending on the ionic radii of the divalent zinc cations. It is assumed that the replacement of smaller divalent iron cations (0.64Å) with the larger divalent zinc cations (0.74Å) on the B- sites causes the unit cell to expand which results in A small increase of lattice constant. This is consistent with previous work that reported by P. Sivakumar, K. Thyagarajan, and A. G. Kumarc [17]. The decrease in average lattice constant in assynthesized sample S2 may be due to the smaller ionic radii of Fe³⁺ (0.67 Å) compared with ionic radii of divalent zinc cation (0.82 Å). Crystal lattice parameter and avarage particle size are directly related. Literature stating that, increasing in the particle size resulting in increase or decrease in the crystal lattice parameter [18]. In here we noted that if the average particle size increased the crystal lattice parameter will be decreased at Glycine-to-nitrate ratio 0.66 and 0.50 , while it is increase at Glycine-to-nitrate ratio 0.33. The results in table (4-1) indicate that the average particle size of 23nm, 27nm and 28 nm for the calcination time 3 hours at 500°C for the calcinated samples S1, S2, and S3, respectively. These results shown that there is remarkable change in lattece parameters with the calcination.

The morphologies and particle sizes for synthesized spinel $ZnFe_2O_4$ ferrite befor and after calcination via various glycine -to-nitrate ratio were characterized via FE-SEM shown in the Fig. 3 and Fig.4, respectively. In the Fig.3 as-synthesized samples S1 and S2 their are avoids. Depending on the earlier studies average crystallite size is related to the pH value. When the pH value is too high, there is a lot of gas that products during combustion process into microwave oven leading to an increase in porosity and a decrease in average crystallite size [19], In addition to their agglomerated in particles due to the interaction between the magnetic nanoparticles [17]. In contrast to the as-synthesized sample S3 that possess no avoids may be due to the fuel- low ratio. These results indicate that a change in the fuel amount lead to significant changes in the morphology of the powders. The FESEM images show that as-synthesized Zinc ferrite possess uniform, symmetry .In Fig.4 FE-SEM images for mentioned samples which are calcinated at 500c for three hours these images showed their agglomeration. This can be illustrate based on the surface area of nanoparticles are high. Among reasons that illustrated morphologies of spherical-like particles :(i) the fuel and preparation route (ii) the lower surface-to-volume ratio for spherical-like particles. Second fact include the effect of morphology and grain boundary mobility on properties of the synthesized ferrites [20].

Figure 3: FE-SEM images of as- synthesezid spine ZnFe₂O₄ ferrite by Microwave – assisted combustion method with different glycine-to-nitrate ratio S1) glycine to nitrates ratio :0.66 S2) glycine to nitrates ratio :0.50 S3)glycine to nitrates ratio :0.33.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

381

Figure 4: FE-SEM images of synthesezid spine ZnFe₂O₄ ferrite by Microwave – assisted combustion method followed by calcination at a temperature of 500 °C for 3h with different glycine-to-nitrate ratio D) glycine to nitrates ratio :0.66 E) glycine to nitrates ratio :0.50 F)glycine to nitrates ratio :0.33.

4.2. Fourier Transforms Infrared spectroscopy characterization

The FT- IR spectra of all synthesized spinel ZnFe₂O₄ ferrite before and after calcination via Microwave –assisted combustion method with different glycine to nitrates ratio presented in Fig. 5 and 6, respectively.

Figure 5: FT-IR spectra for as-synthesized spinel ZnFe₂O₄ ferrite via Microwave –assisted combustion method via various glycine-to-nitrates ratio S1: glycine-to-nitrate ratio: 066, S2: glycine-to -nitrate ratio: 050, S3: glycine- to- nitrate ratio: 033.

Figure 6: FT-IR spectra for synthesized spinel ZnFe₂O₄ ferrite via Microwave – assisted combustion route followed by calcination at 500 °C for 3h via various glycine-tonitrates ratio S1: glycine-to-nitrate ratio :066 , S2: glycine-to -nitrate ratio :050 , S3: glycine- to- nitrate ratio :033 .

In these figures spinel ferrites structure shows two major bands, v_A and v_B . These two vibration bands are related to intrinsic stretching vibration for M $_{Tet} \leftrightarrow O$ and octahedral M $_{Oct} \leftrightarrow$ O sites [2] [21]. The band that appears between $(v_A, 500 \text{ cm}^{-1}-600 \text{ cm}^{-1})$ refers to tetrahedral site, while the band that appears between ($v_{\rm B}$,400 cm⁻¹-480cm⁻¹) corresponding to the octahedral - sites [2]. Those bands are features of all ferrites [22]. In this visitations the bands of absorption for the spinel ZnFe₂O₄ ferrite are lies between (500 cm⁻¹ –590 cm⁻¹) for higher wave number v_A while it is varying between 390 cm⁻¹ – 485 cm⁻¹ for the lower wave number v_B . Peak at 1222 cm⁻¹ that is weak peak could be assigned to the C–O stretching [23] due to adsorbed CO₂ [24]. The band between 1400 cm⁻¹-1500cm⁻¹ is ascribed to a symmetric stretching vibration appearing from the residual nitrate [25]. The peaks that appeared between (1620 cm⁻¹) and 1650 cm⁻¹) represent C=O vibrations mode. The appeared peaks about (1712 cm⁻¹ and 1374 cm⁻¹) are referred to H–O–H vibration in H₂O or OH deformation vibration because of surface hydroxyls [26], [27]; those imply excellent hydrophobicity that is suitable to the photo-catalytic activity of ferrites. The observed peak around (2330 cm⁻¹ – 2350 cm⁻¹) corresponds to (C-H) bond stretching [2] Abroad band at (3000 cm⁻¹ and 3600 cm⁻¹) is observed, which corresponds to a stretching (O-H) group, representing the presence of water as moisture . [2], [23]. There appears to be a peak in S1at around at 3700cm-1 is assignable to O-H band from water, when the product powders were washed with distills water after synthesis [24].

5- Conclusions

Three precursor solutions of spinel zinc ferrite were successfully fabricated via rapid and simple route (microwave combustion) followed by calcination at temperature of 500 °C for three hours. Results of XRD refereed to cubic spinel - structure with space group Fd3m . average crystallite size is increase when Glycine –to-nitrate ratio is decreased 15.8 nm to 26.53 nm . average crystallite size is also increase with calcination at 500 °C (23.03 to 28.16) .The average lattice constants is changed from (8.407 to 8.391)°A and then it increase from (8.391 to 8.427)°A for as –synthesized samples. However the calcination result in A small increase in average lattice constant. These results indicate that a change in the fuel amount lead to significant changes in the morphology of the powders. The FESEM images show that assynthesized Zinc ferrite possess uniform, symmetry , In addition to that FE-SEM images for mentioned samples which are calcinated at 500c for three hours showed their agglomeration and like-spherical shape.

385

References

- [1] B. I. Kharisov, H.V. Rasika, and O. V. Kharissova, Mini-review: Ferrite na noparticles in the catalysis, Arabian J. Chem. 12 (2019)1234-1246.
- [2] Z. Bitar, D. BAKEER, R. Awad, Synthesis, characterization, and magnetic properties of Nano sized Zn_{0.5}Co_{0.5}Er_xFe_{2-x}O₄ prepared by co-precipitation method, Turk J Phys. 43(2019) 80 – 92.
- [3] S. Mahmood, S. Nasir, G. Asghar, M. iftikhar, R. Hussain, G. Xing, Effect of Mg doping on dielectric and Magnetic properties of Co-Zn Nano ferrites, J. Ovonic Res.15 (2019) 95-102.
- [4] T. James ,T. Jose , S. P. John , J. Mathew, Structural, Thermal and Magnetic Properties of PMMA-ZnFe₂O₄ Nano composite Thin Films, Int. J. Appl. Eng. Res. (IJRASET). 7 (2019) 869-872
- [5] A. El Nahrawy, H. El-Deen, A. Soliman, and W. Mosa, Crystallographic and Magnetic Properties of Al³⁺co-doped NiZnFe₂O₄ Nano-particles Prepared by Solgel Process, Egypt. J. Chem. 62 (2019) 525 – 532
- [6] H. Kiswanto, A. Puspitasari, E. Suharyadi, T. Kato, and S. Iwata, Effect of Zinc on Crystal Structure and Magnetic Properties of Co_{1-x}Zn_xFe₂O₄ Nanoparticles Synthesized by Co-precipitation Method, IOP Conf. Series: Mater. Sci. Eng. 367 (2018) 012001
- T. F. Marinca, I. Chicinaş, O. Isnard, V. Pop, Structural and magnetic properties of Nano crystalline ZnFe2O4 powder synthesized by reactive ball milling, J.
 Optoelectron. Adv. Mater. 5 (2011) 39 - 43
- [8] K. El Maalam1, F. Lahcen, Z. Mahhouti, and O. Mounkachi, The effects of synthesis conditions on the magnetic properties of zinc ferrite spinel nanoparticles, J. Phys.: Conf. Ser. 758 (2016) 012008.
- [9] Z. Jia, D. Ren, Y. Liang, and R. Zhu, A new strategy for the preparation of porous zinc ferrite Nano rods with subsequently light-driven photo catalytic activity, Mater. Lett. 65 (2011) 3116–3119.

- [10] J.Mayekar, V.Dhar, and S.Radha. Synthesis, Characterization and Magnetic study of Zinc Ferrite Nanoparticles, Int J Innov Res Sci Eng Technol. 5(2016) 8367-8371
- [11] Z. Wang, Y. Xie, P. Wang, Y. Ma, Sh. Jin, X.Liu, Microwave anneal effect on magnetic properties of Ni_{0.6}Zn_{0.4}Fe₂O₄ nanoparticles prepared by conventional hydrothermal method, J. Magn. Magn. Mater. 323 (2011) 3121–3125
- [12] R.C. Sripriya1, V. A. Samson, S. Anand, J. Madhavan & M. V. A. Raj, Comparative studies of structural, magnetic and photo catalytic degradation on 4chlorophenol by ZnFe₂O₄ nanostructures prepared via cost effective combustion methods, J Matrer. Sci-Mater El.29 (2018) 14084–14092.
- [13] M. Hasanpoor, M. Aliofkhazraei, and H. Delavari, Microwave-assisted synthesis of zinc oxide nanoparticles, Procedia Mater. Sci. 11 (2015) 320 – 325.
- [14] K. J. Mispa, P. Subramaniam, and R. Murugesan, Microwave- assisted route for synthesis of nanosized metal sulphides, Chalcogenide LETT. 7(2010) 335-340.
- [15] M. Sinha, H. Dutta, and S. K. Pradhan, Phase stability of Nano crystalline Mg-Zn ferrite at elevated temperatures, Jpn.J.Appl.Phys.47(2008) 8667–8672
- [16] M. Kooti, A. Naghdi Sedeh, Synthesis and Characterization of NiFe₂O₄ Magnetic Nanoparticles by Combustion Method, J. Mater. Sci. Technol. 29 (2013) 34-38
- P. Sivakumar, K. Thyagarajan, and A. G. Kumar, Investigations on physical ptoperties of Zn ferrite nanoparticles using sol-gel auto combustion technique, Dig. J. Nanomater. Biostructures. 13(2018) 1117-1122
- [18] T. Anjaneyulu, A. T. Raghavender, K. V. kumar, P .N. Murthy and K. Narendra, Effect of Particle Size on the Structural and Magnetic Properties of Nanocrystalline Zinc Ferrite, Sci. Technol. Arts Res. J., 3(2014) 48-51.
- [19] Q.Lin, J. Xu, F. Yang, J. Lin, H.Yang, and Y. He, Magnetic and Mössbauer Spectroscopy Studies of Zinc-Substituted Cobalt Ferrites Prepared by the Sol-Gel Method, Materials (Basel). 11(2018) 1799.
- [20] P. Tehranian, A. Shokuhfar and H. Bakhshi, Tuning The Magnetic Properties of ZnFe₂O₄ Nanoparticles Through Partial Doping and Annealing, J. Supercond. Novel Magn. 32(2018)1013-1025
- [21] S.K. Pendyala, K. Thyagarajan, A. G. Kumar& L. Obulapath, Effect of Mg doping

on physical properties of Zn ferrite nanoparticles, J AUST CERAM SOC. 54 (2018) 467–473.

- [22] S. S. Bhatu, V. K. Lakhani, A. R. Tanna, N. H. Vasoya, J. U. Buch, P. U. Sharma, U. N. Trivedi, H. H. Joshi & K. B. Modi, Effect of nickel substitution on infrared and elastic properties of lithium ferrite, Indian J. Pure Appl. Phys., 45 (2007) 596– 608.
- [23] P.Riyadharsini, A.Pradeep, P. Samba Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic study of Nano crystalline Ni–Zn ferrites, Mater. Chem. Phys. 116 (2009) 207-213.
- [24] Kh. Jubeir, S. Mohamed, A. Mahmoud, Studying the structural properties of Mg-Zn ferrite nanoparticle prepared by auto combustion Sol-gel method, Tikrit J. Pure Sci. 21 (2016) 63- 67.
- [25] M. Sabah, and A. Ridha, Synthesis and an investigation of the structural properties of Cu-Zn ferrite nanoparticles, DJPS. 11(2015) 1-12.
- [26] S. Y Vilar, M. S And'ujar, C.G' Aguirre, J.Mira, M.A. Rodr'iguez, S.C Garc', A simple solve thermal synthesis of MFe₂O₄ (M.Mn, Coad Ni) nanoparticles, J. Solid State Chem. 182(2009).85–90.
- [27] Ch.Lu, Sh.J. Liou, Hydrothermal preparation of nanometer lithium nickel vanadium oxide powder at low temperature, Mater. Sci. Eng. B. 75(2000) 38-42

المستخلص

تم تصنيع ثلاثة نماذج من فرايتات الزنك بطريقة بسيطة و سريعة (الاحتراق بالميكروويف) متبوعة بتحميص بدرجة حرارة 500 درجة مئوية لمدة ثلاث ساعات. تم استخدام املاح نترات الفرك والزنك كمادة اساسيه في تحضير العينات ، بينما تم استخدام الجلايسين كوقود. تم تقدير نقاء الطور ومعلمة الشبكة البلورية باستخدام حيود الاشعة السينية. ومن خلال صور جمان المجهر الإلكتروني الماسح الضوئي (FE-SEM) تم تحديد حجم الجسيمات لعينات المسحوق المحضرة وتشكلاتها . و در اسة انماط الاهتراز في الفريتات تم استخدام جهاز طيف الاشعة تحديد حجم الجسيمات لعينات المسحوق المحضرة وتشكلاتها . و لدر اسة انماط الاهتراز في الفريتات تم استخدام جهاز طيف الاشعة تحت الحمراء (FT-IR) . أظهرت نتائج العينات المحضرة وتشكلاتها . و أن هناك تغيرًا ملحوظًا في نقاء الطور ومعلمة الشبكة البلورية وحجم الجسيمات والتشكيلات مع التحميص. نتائج فحوصات ان هناك تغيرًا ملحوظًا في نقاء الطور ومعلمة الشبكة البلورية وحجم الجسيمات والتشكيلات مع التحميص. نتائج فحوصات ان هناك تغيرًا ملحوظًا في نقاء الطور ومعلمة الشبكة البلورية وحجم الجسيمات والتشكيلات مع التحميص. نتائج فحوصات النهناك تغيرًا ملحوظًا في نقاء الطور ومعلمة الشبكة البلورية وحجم الجسيمات والتشكيلات مع التحميص. نتائج فحوصات البلورات يزداد عندما تنتنت ظهور التركيب البلوري المكعب من نوع السبينل المجموعة 30. لن مان متوسط حجم البلورات يزداد عندما تنخفض نسبة الجلايسين إلى النترات حيث يتم زيادتها من 15.8 نانومتر إلى 26.5 لل البلورات يزداد عندما تنخفض نسبة الجلايسين إلى النترات حيث يتم زيادتها من 15.8 نانومتر إلى 26.5 يانومتر بالنسبة نتائج حيود الأشعة السينية أن متوسط ثوابت الشبكة يتغير من (8.40 إلى 26.51) انكستروم ثم يزيد من (8.31 إلى 26.51) العينات التي تم تحميصها عند 500 درجة مئوية. وكذلك أظهرت نتائج حيود الأسعة السينية أن متوسط ثوابت الشبكة ينغير من (70.80 إلى 8.401) انكستروم ثم يزيد من (8.31 إلى 8.401) الندينية. وكذلك أظهرت نتائج حيود الأشعة السينية أن متوسط ثوابت الشبكة يتغير من (8.40 إلى 8.301) انكستروم ثمايية. وكذلك أظهرت نتائج حيود الأشعة السينية أن متوسط ثوابت الشبكة ينغير من (8.40 إلى و8.401) النكستروم ألم يزيد من (8.41 إلى 8.401) الندينية. وكندم والولي والي مانية. وكندوه ما ورول واليال مالي ألى موسيمان الزان فرال ألهيما ألاررات وم