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In this paper, we introduce the robust control problem (RCP) of non-

linear uncertain systems with the matching condition. A relationship 

has been developed between the robustness with perturbations 

(uncertainties) and the optimality condition of the current control 

problem. A computational algorithm for resilient control of nonlinear 

dynamic systems is proposed, as well as its equivalence to a specific 

optimal control problem (OCP. 
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1. Introduction  

Recently, attention has focused upon the optimization the attitude of systems. And; particularly 

issues related to expanding the range of missiles, The history of control systems dates back to the 

18th century when James Watt used a centrifugal governor to successfully control the speed of a 

steamy engine. In fact, the contributions of Hazen, Minorsky, and Nyquist had a great impact on 

the development of control theory. The Minorsky contribution in 1922 was to play the main role 

in automatic control devices for transportation guidance. He explains how stability is not 

completely fixed by removing the system's differential conditions. Nyquist's work in 1932 focused 

on devising a straightforward system for computing the closed-loop systems stability by 

introducing the open-loop effect. While Hazen's contribution in 1934 introduced a new term in 

control systems called servomechanisms, which talked about the design of hand-off 

servomechanisms able to intently follow changing data sources [1]. The term "servomechanism" 

more commonly refers to a system in which the input is variable and the variable load is absent, 

which is an automatic tool implemented to modify a mechanism's performance through feedback 

of the error-sensing. This term always applies to systems that error-correction signals control and 

the feedback mechanical position or one of its derivatives, such as acceleration or velocity [2]. 

There are some application on control theory, one can see [3-8], and particularly they studied the 

robust control in [9]. Recently, attention has focused on optimizing the attitude of systems, 

particularly issues related to expanding the range of missiles, increasing the profit value of a 

specific project, reducing errors in estimating the position of something, reducing the energy or 

cost required to accomplish some final cases, or reducing the wide variety of formulations.The 

search for a control element that achieves the desired goal while minimizing the criterion of a 

specific system constitutes the basic problem of the optimization theory. To solve the optimization 

problem, one must first know the objective or cost function of the process that they are trying to 

optimize.This requires an appropriate definition of the problem in physical terms and translating 

the physical description into mathematical terms [10]. A controller is said to be robust if it 

continues to function even if its real-world system deviates from the ideal model for which it was 

developed. Given how complex today's cutting-edge systems have evolved, every controller must 

be robust.In fact, finding a model that is totally relevant to a particular system is difficult [11]. The 

great majority of what is associated with this exploration is expressed in Litmann (1979) [12]. The 

robust control stability of straight systems was focused on in state-space settings, where it 

demonstrated that robust control stability can be achieved due to closed criticism in light of a 
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painstakingly chosen Lyupanov work that is free of vulnerability states assuming satisfying the 

matching condition because the most challenging aspect of a physical system to model is 

uncertainty [13, 14]. In order to satisfy this matching condition, the uncertainty in the system must 

fall within the admissible range of the principal input matrix. This strategy is extended by Barmish 

et al. (1985), Barmesh (1988) [15, 16], Peterson and Hollot (1986), Zak (1990), and Khargonekar 

(1990) [11] provided the definition of the quadratic stability, also known as stabilizability. In 

addition, the matching condition is essential for robust quadratic stabilisation in the event that the 

exponential decay must be fast and can be controlled in any way (Swei and Corless 1991; Olbort 

and Cieslik 1988) [17]. 

In [11, 18], Feng lin presented a nonlinear system with uncertainty represented as 𝑓(𝑦) with 

the two cases, matching and unmatching conditions, as shown in these two systems respectively; 

𝑦̇ = 𝐴𝑦 + 𝐵𝑢 + 𝐵𝑓(𝑦), ….. 1 

and 

𝑦̇ = 𝐴𝑦 + 𝐵𝑢 + 𝐶𝑓(𝑦),……2 

where 𝑦 ∈ 𝑅𝑛 and 𝑢 ∈ 𝑅𝑚. 𝐴 is a matrix of 𝑅𝑛×𝑛, 𝐵 is a matrix of 𝑅𝑛×𝑟, 𝐶 is a matrix of 𝑅𝑛×𝑞, 

𝐶 ≠ 𝐵, and 𝑓(𝑦) is arbitrary function. Additionally in [17], he submitted a system with uncertainty 

in 𝐴(𝑝) as follows: 

𝑦̇ = 𝐴(𝑝) 𝑦 + 𝐵𝑢,……..3 

where 𝑝 ∈ 𝑃. 

Motivated by the above discussions, this work tried to introduce a new system that includes two 

uncertainties and two cases the first with the matching condition as follows: 

 

𝑦̇ = 𝐴(𝑝)𝑦 + 𝐵𝑢 + 𝐵𝑓(𝑦),…..4 

while the second with unmatching condition is given by 

𝑦̇ = 𝐴(𝑝)𝑦 + 𝐵𝑢 + 𝐶𝑓(𝑦) …….5 
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2. 2 Problem formulation  

The control system is defined as follows:  

𝑦̇ = 𝐴(𝑝)𝑦 + 𝐵𝑢 + 𝐵𝑓(𝑦),…..6  

 The objective is to design a state feedback system that is capable of stabilising the system for any 

value of 𝑝 that falls within the bounds of the defined constraints and for any perturbation 𝑓(𝑦) that 

is acceptable. The answer to the robust problem is not yet known because the uncertainty does not 

fulfil a matching requirement. This requirement anticipates that the uncertainty will fall 

somewhere within the range of 𝐵. If the uncertainty satisfies the matching requirement, the RCP 

will typically have an answer that can be quickly uncovered by working through a mathrmLQR 

problem. This is the case only if the requirement has been met. The LQR problem is produced 

when uncertainty constraints are imposed on the cost function. The optimum control standards of 

the HJB condition are used as an example to demonstrate that the solution to the LQR problem is 

also a solution to the RCP problem (cite: Swei 1991 necessity). Where 𝑝 ∈ 𝑃, 𝐴(𝑝) ∈ 𝑅𝑛×𝑛, 𝑦 ∈

𝑅𝑛, 𝑢 ∈ 𝑅𝑟, and 𝐵 ∈ 𝑅𝑛×𝑟. These are the system coefficients, and 𝐴(𝑝) = 𝐴(𝑝0) + 𝐵∅(𝑝) for 

some 𝑝0 ∈ (𝑎, 𝑏), for all 𝑝 ∈ (𝑎, 𝑏) and ∅T∅ ≤ G and 𝑓(𝑦) is an unknown nonlinear function with 

𝑓(0) = 0. Let's assume that the function 𝑓(𝑦) is bounded in norm by a well-known function called 

𝑓max(𝑦): 

 

∥ 𝑓(𝑦) ∥≤ 𝑓max(𝑦), ……. 7  

 

The problem of finding a feedback control law u = 𝑘𝑥 such that at 𝑦 = 0 the following closed-

loop system 𝑦̇ 

= 𝐴(𝑝)𝑦 + 𝐵𝑢 + 𝐵𝑓(𝑦),….. 8 

 is globally asymptomatically stable for all admissible uncertainties 𝑝 and f(y). In general, it is 

challenging to find a solution to this nonlinear RCP. Our strategy entails converting it into the OCP 

that is presented in the next section. 
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 Find a feedback control low u = k(x) such that 𝑥 = 0  of the closed-loop system  

 

𝑥̇ = 𝐴(𝑝)𝑥 + 𝐵𝑢 + 𝐵𝑓(𝑥)…..9 

 

is globally asymptotically stable for all admissible perturbations p and 𝑓(𝑥). This nonlinear robust 

control problem is difficult to solve in general. Our approach is to translate it into the following 

problem. 

3  Main Results 

Consider the following system:  

𝑦̇ = 𝐴(𝑝0)𝑦 + 𝐵𝑢…..10  

Our goal is to find a feedback control law u = 𝑘𝑥 that minimises the functional cost  

∫
∞

0
(𝑓max

2 (𝑦) + 𝑦𝑇𝑦 + 𝑦𝑇𝐺𝑥 + 𝑢𝑇𝑢)dt,…… 11 

The cost function has four terms: the cost of uncertainty is represented by terms 𝑓max
2 (y) and 

𝑦𝑇𝐺𝑦; the final two terms, 𝑦𝑇𝑦 and 𝑢𝑇𝑢, are common in optimal control. The relative importance 

of control and regulation can be changed by substituting 𝑦𝑇𝑦 for 𝑄 symmetric and positive 

semidefinite. The relationship between the OCP (3.1)-(3.2) and the problem of robust control (2.1) 

will be shown in the next theorem. 

Theorem 3.1 If problem (2.1) has an optimal control solution, it is also a solution for the RCP 

(10 and 11).  

Proof: From the Definition  

 𝜈(y0) = min
𝑢

∫
∞

0
(𝑓max

2 (𝑦) + 𝑦𝑇𝑦 + 𝑦𝑇𝐺𝑥 + 𝑢𝑇𝑢)dt, 

 to be the minimum cost of bringing the system 𝑦̇ = 𝐴(𝑝)𝑦 + 𝐵(𝑦)𝑢 from 𝑦0 to 0. 

By using Hamilton-Jacobi-Bellman equation, one can have  

 min
𝑢

(𝑓max
2 (𝑦)) + 𝑦𝑇𝐺𝑥 + 𝑦𝑇𝑦 + 𝑢𝑇𝑢 + 𝜈𝑦

𝑇(𝑦)(𝐴(𝑝0)𝑦 + 𝐵𝑢)) = 0, 
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 where 𝜈𝑦(𝑦) = ∂𝜈(𝑦)/ ∂𝑦    . Therefore, if u = ky (with 𝑘𝑇𝑘 is negative definite) is the solution 

to the optimal control problems (3.1)-(3.2), then 

𝑓max
2 (𝑦) + 𝑦𝑇𝐺𝑦 + 𝑦𝑇𝑦 + 𝑦𝑇𝑘𝑘𝑦 + 𝜈𝑦

𝑇(𝑦)(𝐴(𝑝0)𝑦 + 𝐵𝑘𝑦) = 0,…. 12  

2𝑦𝑇𝑘𝑇 + 𝜈𝑦
𝑇(𝑦)𝐵 = 0,…. 13  

 Now  

 𝜈̇(𝑦) = (∂𝜈(𝑦)/ ∂(𝑦)𝑇(𝑑𝑦/𝑑𝑡), 

 = 𝜈𝑦
𝑇(𝑦)(𝐴(𝑝0)𝑦 + 𝐵𝑘𝑦 + 𝐵∅(𝑝)𝑦 + 𝐵𝑓(𝑦)), 

 from the Eq. (3.3) we get:  

 𝜈𝑦
𝑇(𝑦)(𝐴(𝑝0)𝑦 + 𝐵𝐾𝑦) = −(𝑓max

2 (𝑦) + 𝑦𝑇𝐺𝑦 + 𝑦𝑇𝑦 + 𝑦𝑇𝐾𝑇𝐾𝑦), 

from the Eq. (3.4) we have:  

 𝜈𝑦
𝑇𝐵 = −2𝑦𝑇𝐾𝑇 ⇒ 𝜈𝑦

𝑇𝐵(∅(𝑝)𝑦 + 𝑓(𝑦)) = 2𝑦𝑇𝐾𝑇∅𝑦 + 2𝑦𝑇𝐾𝑇𝑓(𝑦), 

 𝜈̇(𝑦) = −𝑓max
2 (𝑦) − 𝑦𝑇𝐺𝑦 − 𝑦𝑇𝑦 − 𝑦𝑇𝐾𝑇𝐾𝑦 − 2𝑦𝑇∅𝐾𝑇 − 2𝑦𝑇𝑓(𝑦)𝐾𝑇 , 

Now by adding and subtracting 𝑦𝑇∅𝑇∅𝑦, we get  

 

𝜈̇ = −𝑓max
2 (𝑦) − 𝑦𝑇𝐺𝑦 − 𝑦𝑇𝑦 − 𝑦𝑇𝐾𝑇𝐾𝑦 − 2𝑦𝑇𝐾𝑇𝑓(𝑦) − 𝑦𝑇𝐾𝑇∅𝑦 − 𝑦𝑇𝐾𝑇∅𝑦

    +𝑦𝑇∅𝑇∅𝑦 − 𝑦𝑇∅𝑇∅𝑦    

= −𝑓max
2 (𝑦) − 𝑦𝑇𝑦 − 2𝑦𝑇𝐾𝑇𝑓(𝑦) − 𝑦𝑇(𝐺 − ∅𝑇∅)𝑦

    −𝑘𝑇(𝑘 − ∅)𝑦 − 𝑦𝑇(𝑘𝑇 + ∅𝑇)∅𝑦

= −𝑓max
2 (𝑦) − 𝑦𝑇𝑦 − 2𝑦𝑇𝐾𝑇𝑓(𝑦) − 𝑦𝑇(𝐺 − ∅𝑇∅)𝑦

−𝑦𝑇𝑘𝑇(𝑘 + ∅)𝑦 − 𝑦(𝑘 + ∅)∅𝑇𝑦𝑇

 

By adding and subtracting 𝑦𝑇𝐾𝑇𝐾𝑦 and 𝑓𝑇𝑓, we get  

 

𝜈̇ = −𝑓max
2 (𝑦) − 𝑦𝑇𝑦 − 𝑦𝑇(𝐺 − ∅𝑇∅)𝑦 − 𝑦𝑇(𝑘 + ∅)(𝑘 + ∅)𝑇𝑦 + −𝑦𝑇𝐾𝑇𝑓(𝑦)

    −𝑦𝑇𝐾𝑇𝑓(𝑦) + 𝑦𝑇𝐾𝑇𝐾𝑦 − 𝑦𝑇𝐾𝑇𝐾𝑦 + 𝑓𝑇(𝑦)𝑓(𝑦) − 𝑓𝑇(𝑦)𝑓(𝑦),

= −𝑓max
2 (𝑦) − 𝑦𝑇𝑦 − 𝑦𝑇(𝐺 − ∅𝑇∅)𝑦 − 𝑦𝑇(𝑘 + ∅)(𝑘 + ∅)𝑇𝑦 + 𝑓𝑇(𝑦)𝑓(𝑦)

    +𝑢𝑇𝑢 − 𝑦𝑇𝑘𝑇(𝑓(𝑦) + 𝑘𝑦) − 𝑓(𝑦)(𝑦𝑇𝑘𝑇 + 𝑓𝑇(𝑦))

= −𝑓max
2 (𝑦) − 𝑦𝑇𝑦 − 𝑦𝑇(𝐺 − ∅𝑇∅)𝑦 − 𝑦𝑇(𝑘 + ∅)(𝑘 + ∅)𝑇𝑦 +

𝑓𝑇(𝑦)𝑓(𝑦) + 𝑦𝑇𝐾𝑇𝐾𝑦 − (𝑓(𝑦) + 𝑘𝑦)(𝑓(𝑦) + 𝑘𝑦)𝑇
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 From the above conditions, we get that: (𝐺 − ∅𝑇∅) ≥ 0, 𝑓max
2 (𝑦) − 𝑓𝑇(𝑦)𝑓(𝑦) ≥ 0  

with 𝐾𝑇𝐾 is negative definite we get:  

 
𝜈̇(𝑦) ≤ −((𝑓max

2 (𝑦) − 𝑓𝑇(𝑦)𝑓(𝑦)) + 𝑦𝑇𝑦 + 𝑦𝑇(𝐺 − ∅𝑇∅)𝑦

+𝑦𝑇(𝑘 + ∅)(𝑘 + ∅)𝑇𝑦 + (𝑓(𝑦) + 𝑘𝑦)(𝑓(𝑦) + 𝑘𝑦)𝑇)
 

 That's mean  

 𝜈̇(y) ≤ −𝑦𝑇𝑦 < 0 

As a result, the requirements of Lyapunov's theory of local stability have been met. As a 

consequence of this, there is a neighbourhood denoted by the expression 𝑁 = {𝑦: ∥ 𝑦(𝑡) ∥< 𝐶} for 

some C > 0. To the extent that if 𝑦(𝑡) enters N then lim𝑡→∞𝑦(𝑡) = 0 

But 𝑦(𝑡) cannot remains forever outside 𝑁, otherwise 𝑦𝑇𝑦 > C For all t > 0, therefore  

 

𝜈(𝑦(𝑡)) − 𝜈(𝑦(0)) = ∫
𝑡

0
𝜈̇(𝑦(𝑠))𝑑𝑠

≤ − ∫
𝑡

0
∥ 𝑦(𝑠) ∥2 𝑑𝑠

≤ − ∫
𝑡

0
𝐶2𝑑𝑠

= −𝐶2t
𝜈(𝑦(𝑡)) ≤ 𝜈(𝑦(0)) − C2t

 

Letting 𝑡 → ∞, we have 𝜈(𝑦(𝑡)) → −∞ which contradicts the fact that 𝜈(𝑦(𝑡)) > 0. Therefore 

lim𝑡→∞𝑦(𝑡) = 0. 

This theorem demonstrated that we can solve the OCP rather than the RCP. We have observed 

that all the perturbed systems are stabilised by this constant control. Our method has the advantage 

that solving an OCP is frequently simpler than solving a RCP. Along with the numerical techniques 

demonstrated in techniques demonstrated in [19-21].. It is clear that if the RCP cannot be solved, 

neither can the OCP. 

3.1  Illustrated Examples 

 This section provided an illustrative example that confirmed the efficiency and efficacy of the 

proposed method. 

Example 3.1 Assume the following control system:  
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 [
𝑦̇1

𝑦̇2
] = [

0 1
1 + 𝑝 𝑝

] [
𝑦1

𝑦2
] + [

0
1

] 𝑢 + [
0
1

] 𝑞𝑦1sin𝑦2, 

 

 where 𝑝 ∈ [−10,1], 𝑞 ∈ [−1,1]. Notice that the system is of the form 𝑦̇ = 𝐴(𝑝)𝑦 + 𝐵𝑢 +

𝐵𝑓(𝑦) is asymptotically stable with  

𝐴(𝑝) = [
0 1
1 + p p

] , 𝐵 = [
0
1

] , 𝑓(𝑦) = 𝑞𝑦1sin𝑦2,….. 14  

  

 |𝑓| ≤ |𝑦1| = 𝑓max(𝑦), 

We would like to design a reliable control system with the form 𝑢 = 𝐾𝑦 so that the closed-loop 

system is asymptotically stable for all values of 𝑝 ∈, [−10,1], 𝑞 ∈ [−1,1]. Let's say we want to 

turn this problem into an OCP, so let's choose the value 𝑝0 = 0 and investigate whether or not 

(𝐴(𝑝0), 𝐵) is controllable. The controllability matrix of (𝐴(𝑝0), 𝐵) is  

 𝐶 = [𝐵 𝐴(𝑝0)𝐵] = [
0 1
1 0

], 

Since 𝐶 is of full rank, the nominal system is controllable. By rewriting the above system, we get 

that: 

 [
𝑦̇1

𝑦̇2
] = [

0 1
1 0

] [
𝑦1

𝑦2
] + [

0
1

] 𝑢 + [
0
1

] [𝑝    𝑝] [
𝑦1

𝑦2
] + [

0
1

] 𝑞𝑦1sin𝑦2, 

Clearly, this system is equivalent to the form  

 𝑦̇ = 𝐴(𝑃0)𝑥 + 𝐵𝑢 + 𝐵∅(𝑝)𝑦 + 𝐵𝑓(𝑦), 

i. e. ∅(𝑝) = [𝑝    𝑝], ∅(𝑝)𝑇∅(𝑝) = [𝑃2 𝑃2

𝑃2 𝑃2] ≤ [
100 100
100 100

] = 𝐺, Then, we can write the 

identical LQR problem such as the following nominal system  

 [
𝑦̇1

𝑦̇2
] = [

0 1
1 0

] [
𝑦1

𝑦2
] + [

0
1

] 𝑢, 

We must find a feedback control law 𝑢 = −𝑘𝑦 that minimizes the cost function  
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∫
∞

0
(𝑓max

2 (𝑦) + 𝑦𝑇𝐺𝑦 + 𝑦𝑇𝑦 + 𝑢𝑇𝑢)𝑑𝑡

= ∫
∞

0
(𝑦1

2 + 𝑦𝑇𝐺𝑦 + 𝑦𝑇𝑦 + 𝑢𝑇𝑢)𝑑𝑡

= ∫
∞

0
(𝑦1

𝑇 [
1 0
0 0

] 𝑦1 + 𝑦𝑇(𝐺 + 𝐼)𝑦 + 𝑢𝑇𝑢) 𝑑𝑡

= ∫
∞

0
(𝑦𝑇 [

102 100
100 101

] 𝑦 + 𝑢𝑇𝑢) 𝑑𝑡

 

With Matlab and with 𝑄 = [
102 100
100 101

], and R = I = 1 We can solve the algebraic Riccati 

equation :  

 𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0 

To get P = [
12.6928 11.1489
11.1489 11.1040

] and the corresponding control is  

 𝑢 = −𝐵𝑇𝑃𝑦 = [−11.1489 − 11.1040]𝑦 

The figures below show the optimal control and the robust control and the solution of the system 

at the arbitrary values 𝑝 and 𝑞. 

  

Figure  1: The Optimal Control u 
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Figure  2: The optimal Solution 

     

Figure  3: The Robust control u at p=-9, q=0 
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Figure  4: The Robust Solution at p=-9, q=0 

   

Figure  5: The Robust control u at p=1, q=-1 

http://creativecommons.org/licenses/by-nc/4.0/


804-654) (2023)3Bas J Sci 41(                                                                                            M.A.A.Jaber& S.L. JAsim 

476 
 

                     This article is an open access article distributed under 

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license) 

).nc/4.0/-http://creativecommons.org/licenses/by( 

   

Figure  6: The Robust Solution at p=1,q=-1 

   

   

Figure  7: The Robust Control u at p=11, q=-15 
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Figure  8: The Robust Solution at p=11, q=-15. 

4  Conclusions 

In this paper, the robust control in the stability of linear systems with nonlinear perturbation it 

is described by transforming the robust control problem with a cost function into an optimal control 

problem. In other words, if we can transform the original problem into an optimal control problem 

with a well-defined solution, ie. we can solve it indirectly. Specifically,  the possibility of 

transforming a robust control problem into an optimal control problem in a system that has two 

perturbations, one in the matrix ( )A p  and the other represented by a nonlinear function ( )f x , has 

been shown. Moreover, this indirect technique has been used as one of the most useful and 

effective methods to solve this type of system. Assuming that the uncertainties associated with 

robust control are restricted to the nonlinear systems we have discussed. 
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المطابقة  بشرطالتحكم الأمثل لنظام التحكم القوي غير الخطي مع اثنين من حالات عدم اليقين و طريقة  

 

 ماجد الجابر، صبيح لفتة جاسم 

 جامعة البصرة-كلية العلوم  -قسم الرياضيات

 

 المستخلص 

( للأنظمة غير الخطية غير المؤكدة مع الشرط المطابق. تم  RCPالتحكم القوية ) حلا لمسلة   هذا البحث ، قدمنافي  

تطوير علاقة بين المتانة مع الاضطرابات )عدم اليقين( والظروف المثلى لمشكلة التحكم الحالية. تم اقتراح خوارزمية 

 .OCPمحددة ) حسابية للتحكم المرن في الأنظمة الديناميكية غير الخطية ، بالإضافة إلى معادلتها لمشكلة تحكم أمثل
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