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1. Introduction

The interference effects in the electron transport through multiple quantum dots system
are the subject of permanent interest, since the systems that composed of two or more
quantum dots coupled to metallic leads are the suitable systems where the interference
effects are clearly visible. The most interesting among the various quantum interference
phenomenon that observed experimentally in quantum dots QDs system are the Fano and
Dicke effects. For instance, J. Gores and others[1] used Fano effect in single electron
transistor and they observed asymmetric Fano resonances in the conductance of a single-
electron transistor resulting from interference between a resonant and a non-resonant path
through the system. The resonant component shows all the features of single-electron
transistor, but the non-resonant path is unclear. While, Bogdan and others[2] studied
electronic transport through a quantum dot strongly coupled to electrodes within a model
with two conduction channels. It was shown that interference of transmitted waves through
both channels lead to Fano resonance. Moreover, Piotr Trocha and J0zef Barnas[3]
analyzed theoretically spin-dependent transport through two coupled single-level quantum
dots attached to ferromagnetic leads by utilization the Green function technique. The
numerical analysis was focused on the Fano anti-resonance interference and Coulomb
interaction effects. They found that the presence of Fano anti-resonance depends on the
sign of the non-diagonal coupling elements. While Chandra Sekhar [4] and others used
Dicke effect to make CNOT gate and single-qubit gate in quantum computer more stable
and more efficiently by using concise realizations. In this work, we study electronic
transport through a double-quantum dot molecule attached to two leads, in a transition from
a connection in series to a completely symmetrical parallel configuration by changing
magnetic flux, for intermediate values of the flux (semi-integer multiples of a quantum of
flux) double quantum dot behaves as series configuration and when the flux is close to
integer multiples the double quantum dots behaves as parallel configuration, the density of
states shows an narrow and a broad peak at the energies of the molecular states, associated
with Fano line shapes in the conductance.

2. Model
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We consider two single-level quantum dots, coupled to left and right leads in the way
illustrated in Fig. 1. The single Hamiltonian can be extended to describe the two quantum
dots in parallel, the electronic Hamiltonian can be described by the Anderson model[5],
taking in this model all the coupling interactions between the two dots and between the
dots and the two leads. According to this model, the system can be described by the

following Hamiltonian:

Where H,, represents the Hamiltonian of the double quantum dots and described by:

2
Hy = Z gicici—te(cley + cfcy) @)
i=1
Where t. is the tunneling interaction between two dots, ¢; is the quantum dots energy level, clT C;

are creation and annihilation operator of the quantum dots energy levels.

H; represents the Hamilton of the two leads;

— t
H, = Z kO, kg,
kq€{L,R}

(3)

&, is the energy in leads, a,ﬁ a,  are creation and annihilation operator of the electronic state k
a a

in leads levels.

H, is Hamilton of interaction between dots is given by;

H, = Z Vlkac;rcka+h-c+ Z VZkac;cka+h-c
kq€{L,R} kq€{L,R}

(4)

Vik, V2k, are the coupling matrix elements (i = 1,2)between dots and leads(a = R, L).

Green's function (GFs) is a powerful and clever technique to solve many differential

equations in classical mechanics, electrodynamics, and even quantum field theory.

Quantum dots systems are nano structures, then the electron transport through QDs is a
guantum transport and is a many body non-equilibrium problem, so it is suitable to study

such transport by using the non-equilibrium Green function (NEGF) approach[6]. The
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matrix elements represent the retarded GFs of double quantum dots systems defined as[7-
9

G (D) = —i0(O)({c; (D), ¢/ (O}  i=j=12 (5)

It is possible to write c;(t) in terms of the time independent operator such as c; (0)

ci(t) = et c;(0)e ! (6)
With H is given in equation (1).
d cry o iHE —iHt iHt —iHt(_; 7
Eci(t) = iHe''¢;(0)e + ettc;(0)e Mt (—iH) (7)
d . .
Eci(t) = ie'*[H,c;(0)]e ¢t 8
— jeiHt fo—iHt 4 jolHtpo—iHt 4 piHtC o—iHE 9)
For simplicity we use (A, B, C)
A =[Hy,c;(0)] = —gic; + teey +tecy (10)
B =[Hy,c(0)]=0 (11)
C = [H},¢;] = =2Vyc — 2Vipeg — 2V ¢, — 2Vopcg (12)
[H,c;(0)] = —gic; +tecq + tecy — 2Vipcp, — 2Vigegr — 2V5 ¢ — 2Vpep (13)

We started our solution by differentiate equation (5) to get;

d d d
G50 = —i =00, ] ) - 8D (- (0, O (14)
(S G0 = 88, + e M8 @(IH, (0], ¢ (e (15)
where
d
22000 = 8(), 8y = {0,/ () (16)
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+ 0(©)e  (({[Hy, c;(0)], c}.f(o)} (17)

+ {[HI) Ci(O)]l C]T (O)}))e_th
Get use of the definitions of A,B and C then;

d

+ 00 e (({—gic; + teey + tecsy, c;r}

(18)
—{[2Vy L + 2Vipeg + 2V
+ ZVZRCRJ Ci(O)], C;}))e_th
with some simplifications;
'iG" (t) =6(t)6;; + &Gl (t) —t.GL.(t)+ ) V. ;G :(t)
b ) = ij T &by cbij ki Ykgj (19)
ka
where
ke j (8) = —H(t){cka(t),cj-T} (20)
We use Fourier transformation to transfer from time to energy space.
. d r : T
lEGij(t) = (0 + lU)Gij(w) (21)
(@ + )G (@) = 8+ (& = )G (@) + ) Vi, Gy (@) 22)
kg
We assume t. =0
(0 + DG (@) = 8 + &GHW) + ) Vi, Gy (@) (23)
ka
O Vi i G i(w
G{-(w) — .l] Zkr kal. ka]( ) (24)
1 (w+in—¢) (w+in—¢)
If we define that g (w) = (w+;’_s) Then the retarded Green function will be:
G} (@) = 859 (@) + gF (@) ) Vii Gy (@) (25)
kg
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Following the same steps, we also can find Green function for leads:

d
77 ey (8 = €, Gl (8 + Z Viegj Gij (6) (26)
e

And Green function for leads is equal to:

1 7 o
T () = — To(t el(wﬂn)tdt 27
O ﬁﬁi 0 (© 21)
Use Fourier transformation again;
d
i—Gp,;j(®) = (0 + NG, ;(w) (28)

dt
Using equation (26,28) to get:

Zka Vkaj Girj (w)

iG, (w)= 29
k“]( ) (a)+in—£ka) (29)
Or
ko (@) = gf(w) Z Vigj Gij (@) (30)
kg
For
1. a=LR ,i=1,j=1
(w +in)Gi;(w) =1+ &Gy + Z(Vkale + Vir1Gkr1) (31)
ka
Also for G,_;(w)
2 Vieai Gij(w)
ro. — a J 32
ki () = T i — e 52
Weusej=1 ,i=12, a=1L
VL1G11 + VL2G21
r frgp—
Gr1(w) = o — o — in) (33)
Vr1G11 + Vg G
G]T;Rl((i)) — _ R1Y11 R2Y21 (34)

(exr — w —in)

Put equations (29,31) in equation 28:
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(w + in)Gi; (w)

=1+81 ‘:’L‘l

V1G4 + V;5G
+Z[VkL1 (_ 11b11 L2 21) (35)
ka

(& —w —in)

Vr1G11 + Vg G
o (- )
(w +in)Gi; (w)
=1+ &Gy + (=V[1Vi14,Gi1) + (=V[1V124,.Ga1) (36)
+ (—Vg1Vr14RrG11) + (Vg1 Vr2ARG21)
Introducing the magnetic flux effect (¢) on the two leads in the way below;
Vi = VLe_i¢/4 Vii = VLei¢/4
Via = VLei¢/4 Vi = VLe_i¢/4

Vr1 = VRei¢/4 Vg1 = VRe_i(pM (37)
Viy = Vge /% Vg, = Vge'®/*
And
A Z !
= - 38
“ " Lot — 0 — ) (38)

So, equation (36) becomes:

(0 +in)Gqq(w)
=1+ &G (w) — VLZALGll - VLZALG21ei¢/2 - VRZARGll (39)
- V}zzARG21e_i¢/2

The two leads are similar we can put, V2 = V2 = V2 then equation (38) will be reduced to:

(w +in)Gy1 ()
=1+ Gyyle; —VZ(AL + 4] (40)
—V2Gyy[ALe'?/% + Age™¢/2]
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(w +in)G31(w)
=0+ £,G3; (w)

V1G4 + V;5G
_I_Z [VkLZ (_ 11b11 L2. 21) (41)
ka

(& —w —in)

Vr1G11 + VR2G21>]
(kg — @ — i)
And get use of equations (37) to find the element G}

+ Vir1 (—

Gy1[ALe /% + Ape'®/?]
[((w+in) —e +V2(AL + AL)]

Put equation (42) in equation (40), and after some work we get G, the first element in the Green

Gy = —V? (42)

matrix.

G11 = l(l) + ”7 — & + VZ(AL + AL)
(43)

ARG+ A AR(e® + e )\
[((w+in) —& + V(AL + AL)]

Using equation (34)

1—V2Gy[ALe"/? + Age™1#/2]
(w +in—e +V2(A4, + AL))

(44)

Gyp =

From equation (42), G,; will have the form

[(w+in) —e +V2(A, + ADN(w+in — & + VZ(A, + AL)

G21 = ¢ i
_V2 ALe 2 +AR6’ 2]

(45)

-1

2 i
+V ALe 2 + Age2

For simplicity we define:

A2=42 =0
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1

VZ[AL + AR] = VZZ

a

1
Er — W — (N

IR

r
iz (46)

Where 'L, T'R describes the tunneling coupling of the two quantum dots to left and right leads and

given by the below equations[10];

1 7]
r e 2
R =
2| i (47)
le 2 1 .
i
. r| 1 ez
e 2 1 ]
From equations (44,46) we can get G,;
(a) —& + Lg)
Gyp = P (49)
(a) —& + lg) (w —&+ lg) +%c052%
In the same way can find G,4, G5, G55, such as;
—lECOS%
oz = - —3 (50)
(w—el+i7)(a)—sz+12)+ 7 c0527
(a) —& + L'?)
Gyp = 5 (51)
(w—el + ig)(a)—ez +ig)+ ) COSZ%
(a) —& + i7)
Gy = T 5 % (52)
(w —& + if)(a) —&+ 17) + g cos? >
. G11 G12]
GMw) =
Gy1 Gy (53)

The retarded green function matrix will be:
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GR(w)
(0-arig) 1
~ 1 w &y 12 l2 COS > (5
B T T 2
(a)—el+li)(a)—€2+li)+TCOSZ% _iECOS? ( _gl_H-E)
2 2 2
With the advanced green function G4 (w) be;
G (w)
T T ¢
~ 1 (0)—82—15> lECOSE (5
B T T\ T2 ¢ r ¢ r
w—&+is)(w—&+i5)+=cos?5 PO, 4 P
( 1 2)( 2 2) 4 2| ijcos7 (w € 12>J
3. Transmission Rate Calculation
To find the transmission rate we use equation[8-12];
T(w) = Tr{GA(w)'RGR(w)I'"} (56)
1 1 1-‘1 1 l—‘1 2 R G 11?2 FlLl FlLZ
T(w)=Tr (57)
2 1 l—‘2 1 1-‘2 2 R G 12?2 1-‘ZLl l-‘ZLZ
T(w) =Ty + Ty (58)

We solve equation (57) with all the matrix element defined and the we get T;; such as;

r? ip r
Ty = [(w —&,)? — 7 tios%e_T (a) —& — i—)

2

r i¢ r r?
+i—cos£e2< —£2+l—)+— f

2 2 2 2 2 (59)

r r

omamig)(o-aig)

T _ip
+LECOSE((U—£1—L— 2
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2 2 r i} r
Tz = [(0 — &)? +_+_C052£+ i—cos—eT(w — & + i_>

4 2 2 2 2 2
r Ty .
+(a)—32—LE)(w—£1+lE)e‘¢
. (60)
) T
—LFcosEeZ (a)—ez—L§>
+.F qb( +.F> _i¢
izcoso|\w—& +iz)e
Finally T (w) will be;
F2<4cosz¢(a)—£)2+4(2) sm2¢>
T(w) = (61)

_ Ae\? T* _
|(@-97-(5) - sin’ %] M0 -B)]?
Wheregzglzﬂ,Aszez—el
4. Density of State Calculation

We get use of the diagonal elements of the Green’s function matrix to calculate the
spectra densities A, then the summing overall + states we obtain p(¢) the density of

states of the QDs where[7, 9];

p(e) = ZA (62)
T I
=g (B - artet ot ()

p=rfe—teos(D) [+ o -0+ rirms (B @

p(e) = LACOS ( ) [(t —€)? + 4TLTR sin (f)]
(66)

+%sm ( > [(t + €)% + 4T'LTR cos (f)]

Finally, the density of states for quantum dot molecule can be calculated from:
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p(e)
et (§)ane (§) sl oo (§) e s ()
a A

(67)

With T =Tl 4+ IR,

5. Result and Discussion

In this section, we studied the numerical calculation (using Matlab simulation) for the
density of states and conductance at zero temperature of two coupled quantum dots
connected symmetrically to leads in a parallel configuration under the effect of a magnetic
flux. All our calculations are performed for a weak coupling t. = 0 regime and for strong
coupling, where t, =T, (tc < FR,L), equation (67) was applied to get the density of states

as a function of the energy (e).

Fig.2a represent the density of states of the DQD for (¢, = 0) and Fig.2 (b,c,d,e,f) for (t. =
') with (I, = I}) and (T' = I, + Iz) and for different magnetic flux.

A special case for the density of state distribution when t. = 0 and ¢ = 0 (as shown in
Fig.2a) the distributions that represented Lorentzians shape have peak centered at € = 0,
while for ¢ = mand t, = T (Fig.2b) the distributions are identical and represented by the
superposition of two Lorentzians separated by 2t.. Also we have the same behaviors in
Fig.2 (c,d) for ¢ = 0.5m, 1.5m and t. = I but the peaks are unidentical.

The Dicke effect in parallel configuration occurs mostly in symmetrical case where (I, =
[x) and whenever the magnetic close to the integer of flux quanta (¢ = 2nn,n =

integer).

By changing the value of magnetic flux to be ¢ = 2mn, two peaks are exist in fig.2(e,f),

and we begin to see a narrowing of one distribution and a widening of the other one.
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The figures show two peaks, one is a wide states and the other is a narrow states. These
states are interchanged their positions for different ¢, and it is obvious that the peaks in

these figures are lying on (¢ = —2,2) depends on the value of tunneling coupling (t.).

In particular, when the magnetic flux is near an integer number of flux quanta, the system
is in the Dicke regime. From the densities of states, it can be deduced that the antibonding
(bonding) state becomes progressively localized as the magnetic flux tends to an integer
number of flux quanta. When the magnetic flux is exactly an integer, tunneling through the
antibonding (bonding) state is totally suppressed and the bonding (antibonding) state is the
only participating state in the transmission. The controlling of the decoherence processes
with the magnetic field exhibited by the present system may have applications in quantum

computing.

To study the transport through the quantum dot system, the below equation is required for

the conductance at zero temperature[8, 9].

2e?
G(e) = o T(¢) (67)

The conductance spectrum is composed of Fano line shapes at the bonding and antibonding
energies, and vice versa, depending on whether this number is even or odd, with their line
broadenings controlled by the magnetic flux. The narrowing (broadening) of a line in the
conductance can be interpreted as an increase (decrease) in the lifetime of the

corresponding molecular state.

So, Fig (3) demonstrates the development of conductance with changing the magnetic flux,
these figures shows two peaks for each value of magnetic flux, these peaks are different in
width and height.

From these figs and for (¢ = 0,0.1m, 1.9, ) two peaks are appear in the conductance

spectra this behavior is similar to that of the density of states.

In fig (3a) with (¢ = 0) no Fano peak exists. However if ¢ is increased from (¢ = 0), the
channel connecting the decoupling state and the leads is opened and Fano interference
exist [13].
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Figure 1: Density of states (p) as a function of energy (), withI'y =I'p =Ty = 1,I' = I'y + 'y for
(@) t, = 0 and (b,c,d,e,f) t, = I', with different magnetic flux as shown in figure.
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G 0.5

-4 -2 0 2

Figure 2: conductance (g) as a function of energy (¢), withI'y =I'p =T'y =1, =T'; + 'y for
(@) t. = 0 and (b,c,d,e,f) t. = I', with different magnetic flux as shown in figure.
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