
974-184(3) (2023)1Bas J Sci 4                                               et al.                                  Abbas. A. Hashim 

481 
 

                     This article is an open access article distributed under 

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license) 

).nc/4.0/-http://creativecommons.org/licenses/by( 

 

Fano and Dicke Effects in Parallel-Coupled Quantum Dots Embedded 

Between Two Leads 

*. A. Hashim, T. A. Salman, and H. A. Jassem bbasA 

Department of Physics, College of science, University of Basrah, Basra ,IRAQ 

*Corresponding author E-mail: abbas.karam.sci@uobasrah.edu.iq  

Doi:10.29072/basjs.20230306 

 

 

Received 11 Feb 2023; Received in revised form 22 July 2023;  Accepted 18 Sep 2023, Published  31, 

Dec 2023 

ARTICLE INFO ABSTRACT 

Keywords 

Green-function, Dicke 

effect, Fano effect, 

equation of motion 

 

In this article, electronic transport through a double quantum dot 

attached in parallel to a metal leads and with the presence of a magnetic 

flux is studied with the help of the Green-function formalism and the 

equation of motion approach. A detail formula is obtained for the 

density of states and the conductance. The Fano and Dicke effects in 

the conductance spectra of the double quantum dots system DQD is 

found and controlled by tuning the coupling (Γ) of the two dots to right 

(left) Leads and by changing the external magnetic flux. 
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1. Introduction  

     The interference effects in the electron transport through multiple quantum dots system 

are the subject of permanent interest, since the systems that composed of two or more 

quantum dots coupled to metallic leads are the suitable systems where the interference 

effects are clearly visible. The most interesting among the various quantum interference 

phenomenon that observed experimentally in quantum dots QDs system are the Fano and 

Dicke effects. For instance, J. Gores and others[1] used Fano effect in single electron 

transistor and they observed asymmetric Fano resonances in the conductance of a single-

electron transistor resulting from interference between a resonant and a non-resonant path 

through the system. The resonant component shows all the features of single-electron 

transistor, but the non-resonant path is unclear. While, Bogdan and others[2] studied 

electronic transport through a quantum dot strongly coupled to electrodes within a model 

with two conduction channels. It was shown that interference of transmitted waves through 

both channels lead to Fano resonance. Moreover, Piotr Trocha and Józef Barnaś[3] 

analyzed theoretically spin-dependent transport through two coupled single-level quantum 

dots attached to ferromagnetic leads by utilization the Green function technique. The 

numerical analysis was focused on the Fano anti-resonance interference and Coulomb 

interaction effects. They found that the presence of Fano anti-resonance depends on the 

sign of the non-diagonal coupling elements. While Chandra Sekhar [4] and others used 

Dicke effect to make CNOT gate and single-qubit gate in quantum computer more stable 

and more efficiently by using concise realizations. In this work, we study electronic 

transport through a double-quantum dot molecule attached to two leads, in a transition from 

a connection in series to a completely symmetrical parallel configuration by changing 

magnetic flux, for intermediate values of the flux (semi-integer multiples of a quantum of 

flux) double quantum dot behaves as series configuration and when the flux is close to 

integer multiples the double quantum dots behaves as parallel configuration, the density of 

states shows an narrow and a broad peak at the energies of the molecular states, associated 

with Fano line shapes in the conductance. 

 

2. Model  
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We consider two single-level quantum dots, coupled to left and right leads in the way 

illustrated in Fig. 1. The single Hamiltonian can be extended to describe the two quantum 

dots in parallel, the electronic Hamiltonian can be described by the Anderson model[5], 

taking in this model all the coupling interactions between the two dots and between the 

dots and the two leads. According to this model, the system can be described by the 

following Hamiltonian: 

 𝐻 = 𝐻𝑀 + 𝐻𝐿 + 𝐻𝐼 (1)  

Where 𝐻𝑀 represents the Hamiltonian of the double quantum dots and described by: 

 𝐻𝑀 = ∑𝜀𝑖𝑐𝑖
†𝑐𝑖 − 𝑡𝑐(𝑐2

†𝑐1 + 𝑐1
†𝑐2)

2

𝑖=1

 (2)  

Where 𝑡𝑐  is the tunneling interaction between two dots, 𝜀𝑖 is the quantum dots energy level, 𝑐𝑖
†𝑐𝑖 

are creation and annihilation operator of the quantum dots energy levels. 

𝐻𝐿 represents the Hamilton of the two leads; 

 𝐻𝐿 = ∑ 𝜀𝑘𝛼
𝑎𝑘𝛼

† 𝑎𝑘𝛼

 

𝑘𝛼∈{𝐿,𝑅}

 
(3)  

𝜀𝑘𝛼
 is the energy in leads, 𝑎𝑘𝛼

† 𝑎𝑘𝛼
 are creation and annihilation operator of the electronic state 𝑘 

in leads levels. 

 𝐻𝐼 is Hamilton of interaction between dots is given by; 

 𝐻𝐼 = ∑ 𝑉1𝑘𝛼

 

𝑘𝛼∈{𝐿,𝑅}

𝑐1
†𝑐𝑘𝛼

+ ℎ ∙ 𝑐 + ∑ 𝑉2𝑘𝛼

 

𝑘𝛼∈{𝐿,𝑅}

𝑐2
†𝑐𝑘𝛼

+ ℎ ∙ 𝑐 
(4)  

𝑉1𝑘𝛼
, 𝑉2𝑘𝛼

 are the coupling matrix elements (𝑖 = 1,2)between dots and leads(𝛼 = 𝑅, 𝐿). 

Green's function (GFs) is a powerful and clever technique to solve many differential 

equations in classical mechanics, electrodynamics, and even quantum field theory. 

Quantum dots systems are nano structures, then the electron transport through QDs is a 

quantum transport and is a many body non-equilibrium problem, so it is suitable to study 

such transport by using the non-equilibrium Green function (NEGF) approach[6]. The 
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matrix elements represent the retarded GFs of double quantum dots systems defined as[7-

9]; 

 G𝑖𝑗
𝑟 (𝑡) = −𝑖𝜃(𝑡)〈{𝑐𝑖(𝑡), 𝑐𝑗

†(0)}〉         𝑖 = 𝑗 = 1,2  (5)  

It is possible to write 𝑐𝑖(𝑡) in terms of the time independent operator such as 𝑐𝑖(0) 

 𝑐𝑖(𝑡) = 𝑒𝑖𝐻𝑡 ∙ 𝑐𝑖(0)𝑒−𝑖𝐻𝑡 (6)  

With 𝐻 is given in equation (1). 

 
𝑑

𝑑𝑡
𝑐𝑖(𝑡) = 𝑖𝐻𝑒𝑖𝐻𝑡𝑐𝑖(0)𝑒−𝑖𝐻𝑡 + 𝑒𝑖𝐻𝑡𝑐𝑖(0)𝑒−𝑖𝐻𝑡(−𝑖𝐻) (7)  

 
𝑑

𝑑𝑡
𝑐𝑖(𝑡) = 𝑖𝑒𝑖𝐻𝑡[𝐻, 𝑐𝑖(0)]𝑒−𝑖𝐻𝑡 (8)  

 = 𝑖𝑒𝑖𝐻𝑡𝐴𝑒−𝑖𝐻𝑡 + 𝑖𝑒𝑖𝐻𝑡𝐵𝑒−𝑖𝐻𝑡 + 𝑖𝑒𝑖𝐻𝑡𝐶𝑒−𝑖𝐻𝑡 (9)  

For simplicity we use (A, B, C) 

 𝐴 = [𝐻𝑀, 𝑐𝑖(0)] = −𝜀𝑖𝑐𝑖 + 𝑡𝑐𝑐1 + 𝑡𝑐𝑐2 (10)  

 𝐵 = [𝐻𝐿 , 𝑐𝑖(0)] = 0 (11)  

 𝐶 = [𝐻𝐼 , 𝑐𝑖] = −2𝑉1𝐿𝑐𝐿 − 2𝑉1𝑅𝑐𝑅 − 2𝑉2𝐿𝑐𝐿 − 2𝑉2𝑅𝑐𝑅 (12)  

 [𝐻, 𝑐𝑖(0)] = −𝜀𝑖𝑐𝑖 + 𝑡𝑐𝑐1 + 𝑡𝑐𝑐2 − 2𝑉1𝐿𝑐𝐿 − 2𝑉1𝑅𝑐𝑅 − 2𝑉2𝐿𝑐𝐿 − 2𝑉2𝑅𝑐𝑅 (13)  

 

 

We started our solution by differentiate equation (5) to get; 

 
𝑑

𝑑𝑡
G𝑖𝑗

𝑟 (𝑡) = −𝑖
𝑑

𝑑𝑡
𝜃(𝑡)〈{𝑐𝑖(𝑡), 𝑐𝑗

†(0)}〉 − 𝑖𝜃(𝑡) 〈{
𝑑

𝑑𝑡
𝑐𝑖(𝑡), 𝑐𝑗

†(0)}〉 (14)  

 𝑖
𝑑

𝑑𝑡
G𝑖𝑗

𝑟 (𝑡) = 𝛿(𝑡)𝛿𝑖𝑗 + 𝑒𝑖𝐻𝑡𝜃(𝑡)〈{[𝐻, 𝑐𝑖(0)], 𝑐𝑗
†(0)}〉𝑒−𝑖𝐻𝑡 (15)  

where 

 
𝑑

𝑑𝑡
θ(𝑡) = 𝛿(𝑡),   𝛿𝑖𝑗 = {𝑐𝑖(𝑡), 𝑐𝑗

†(0)} (16)  
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𝑖𝑖
𝑑

𝑑𝑡
G𝑖𝑗

𝑟 (𝑡) = 𝛿(𝑡)𝛿𝑖𝑗

+ 𝜃(𝑡)𝑒𝑖𝐻𝑡(〈{[𝐻𝑀, 𝑐𝑖(0)], 𝑐𝑗
†(0)}

+ {[𝐻𝐼 , 𝑐𝑖(0)], 𝑐𝑗
†(0)}〉)𝑒−𝑖𝐻𝑡 

(17)  

Get use of the definitions of A,B and C then; 

 

𝑖
𝑑

𝑑𝑡
G𝑖𝑗

𝑟 (𝑡) = 𝛿(𝑡)𝛿𝑖𝑗

+ 𝜃(𝑡)𝑒𝑖𝐻𝑡(〈{−𝜀𝑖𝑐𝑖 + 𝑡𝑐𝑐1 + 𝑡𝑐𝑐2, 𝑐𝑗
†}

− {[2𝑉1𝐿𝑐𝐿 + 2𝑉1𝑅𝑐𝑅 + 2𝑉2𝐿𝑐𝐿

+ 2𝑉2𝑅𝑐𝑅 , 𝑐𝑖(0)], 𝑐𝑗
†}〉)𝑒−𝑖𝐻𝑡 

(18)  

with some simplifications; 

 𝑖
𝑑

𝑑𝑡
G𝑖𝑗

𝑟 (𝑡) = 𝛿(𝑡)𝛿𝑖𝑗 + 𝜀𝑖G𝑖𝑗
𝑟 (𝑡) − 𝑡𝑐G𝑖𝑗

𝑟 (𝑡) + ∑𝑉𝑘𝛼𝑖

 

𝑘𝛼

G𝑘𝛼𝑗
𝑟 (𝑡) (19)  

where  

 G𝑘𝛼𝑗
𝑟 (𝑡) = −𝜃(𝑡){𝑐𝑘𝛼

(𝑡), 𝑐𝑗
†} (20)  

We use Fourier transformation to transfer from time to energy space. 

 𝑖
𝑑

𝑑𝑡
G𝑖𝑗

𝑟 (𝑡) = (𝜔 + 𝑖𝜂)G𝑖𝑗
𝑟 (𝜔) (21)  

 (𝜔 + 𝑖𝜂)G𝑖𝑗
𝑟 (𝜔) = 𝛿𝑖𝑗 + (𝜀𝑖 − 𝑡𝑐)G𝑖𝑗

𝑟 (𝜔) + ∑𝑉𝑘𝛼

 

𝑘𝛼

G𝑘𝛼𝑗
𝑟 (𝜔) (22)  

We assume 𝑡𝑐 →0  

 (𝜔 + 𝑖𝜂)G𝑖𝑗
𝑟 (𝜔) = 𝛿𝑖𝑗 + 𝜀𝑖G𝑖𝑗

𝑟 (𝜔) + ∑𝑉𝑘𝛼

 

𝑘𝛼

G𝑘𝛼𝑗
𝑟 (𝜔) (23)  

 G𝑖𝑗
𝑟 (𝜔) =

𝛿𝑖𝑗

(𝜔 + 𝑖𝜂 − 𝜀𝑖)
+

∑ 𝑉𝑘𝛼𝑖
 
𝑘𝑟 G𝑘𝛼𝑗

𝑟 (𝜔)

(𝜔 + 𝑖𝜂 − 𝜀𝑖)
 (24)  

If we define that 𝑔𝑖
𝑅(𝜔) =

𝛿𝑖𝑗

(𝜔+𝑖𝜂−𝜀𝑖)
. Then the retarded Green function will be: 

 G𝑖𝑗
𝑟 (𝜔) = 𝛿𝑖𝑗𝑔𝑖

𝑅(𝜔) + 𝑔𝑖
𝑅(𝜔)∑𝑉𝑘𝛼𝑖

 

𝑘𝛼

G𝑘𝛼𝑗
𝑟 (𝜔) (25)  
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Following the same steps, we also can find Green function for leads: 

 𝑖
𝑑

𝑑𝑡
G𝑘𝛼𝑗

𝑟 (𝑡) = 𝜀𝑘𝛼
G𝑘𝛼𝑗

𝑟 (𝑡) + ∑𝑉𝑘𝛼𝑗

 

𝑘𝛼

G𝑖𝑗
𝑟 (𝑡) (26)  

And Green function for leads is equal to:  

 G𝑘𝛼𝑗
𝑟 (𝑡) =

1

√2𝜋
∫ G𝑘𝛼𝑗

𝑟 (𝑡)𝑒𝑖(𝜔+𝑖𝜂)𝑡𝑑𝑡

∞

−∞

 (27)  

Use Fourier transformation again; 

 𝑖
𝑑

𝑑𝑡
G𝑘𝛼𝑗

𝑟 (𝑡) = (𝜔 + 𝑖𝜂)G𝑘𝛼𝑗
𝑟 (𝜔) (28)  

Using equation (26,28) to get: 

 𝑖G𝑘𝛼𝑗
𝑟 (𝜔) =

∑ 𝑉𝑘𝛼𝑗
 
𝑘𝛼

G𝑖𝑗
𝑟 (𝜔)

(𝜔 + 𝑖𝜂 − 𝜀𝑘𝛼
)

 (29)  

Or  

 G𝑘𝛼𝑗
𝑟 (𝜔) = 𝑔𝑟

𝑅(𝜔)∑𝑉𝑘𝛼𝑗

 

𝑘𝛼

G𝑖𝑗
𝑟 (𝜔) (30)  

For 

1. 𝛼 = 𝐿, 𝑅    , 𝑖 = 1  , 𝑗 = 1 

 (𝜔 + 𝑖𝜂)G11
𝑟 (𝜔) = 1 + 𝜀1G11

𝑟 + ∑(𝑉𝑘𝐿1G𝑘𝐿1
𝑟 + 𝑉𝑘𝑅1G𝑘𝑅1

𝑟 )

 

𝑘𝛼

 (31)  

Also for G𝑘𝛼𝑗
𝑟 (𝜔) 

 G𝑘𝛼𝑗
𝑟 (𝜔) =

∑ 𝑉𝑘𝛼𝑖
 
𝑖 G𝑖𝑗

𝑟 (𝜔)

(𝜔 + 𝑖𝜂 − 𝜀𝑘𝑟)
 (32)  

We use 𝑗 = 1    , 𝑖 = 1,2  , 𝛼 = 𝐿 

 G𝑘𝐿1
𝑟 (𝜔) = −

𝑉𝐿1G11 + 𝑉𝐿2G21

(𝜀𝑘𝐿 − 𝜔 − 𝑖𝜂)
 (33)  

 G𝑘𝑅1
𝑟 (𝜔) = −

𝑉𝑅1G11 + 𝑉𝑅2G21

(𝜀𝑘𝑅 − 𝜔 − 𝑖𝜂)
 (34)  

Put equations (29,31) in equation 28: 
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(𝜔 + 𝑖𝜂)G11
𝑟 (𝜔)

= 1 + 𝜀1G11
𝑟

+ ∑[𝑉𝑘𝐿1 (−
𝑉𝐿1G11 + 𝑉𝐿2G21

(𝜀𝑘𝐿 − 𝜔 − 𝑖𝜂)
)

 

𝑘𝛼

+ 𝑉𝑘𝑅1 (−
𝑉𝑅1G11 + 𝑉𝑅2G21

(𝜀𝑘𝑅 − 𝜔 − 𝑖𝜂)
)] 

(35)  

 

(𝜔 + 𝑖𝜂)G11
𝑟 (𝜔)

= 1 + 𝜀1G11
𝑟 + (−𝑉𝐿1

∗ 𝑉𝐿1𝐴𝐿G11) + (−𝑉𝐿1
∗ 𝑉𝐿2𝐴𝐿G21)

+ (−𝑉𝑅1
∗ 𝑉𝑅1𝐴𝑅G11) + (−𝑉𝑅1

∗ 𝑉𝑅2𝐴𝑅G21) 

(36)  

Introducing the magnetic flux effect (𝜙) on the two leads in the way below;  

 

𝑉𝐿1 = 𝑉𝐿𝑒
−𝑖𝜙/4 𝑉𝐿1

∗ = 𝑉𝐿𝑒
𝑖𝜙/4

𝑉𝐿2 = 𝑉𝐿𝑒
𝑖𝜙/4 𝑉𝐿2

∗ = 𝑉𝐿𝑒
−𝑖𝜙/4

𝑉𝑅1 = 𝑉𝑅𝑒𝑖𝜙/4 𝑉𝑅1
∗ = 𝑉𝑅𝑒−𝑖𝜙/4

𝑉𝑅2 = 𝑉𝑅𝑒−𝑖𝜙/4 𝑉𝑅2
∗ = 𝑉𝑅𝑒𝑖𝜙/4

 (37)  

And  

 𝐴𝛼 = ∑
1

(𝜀𝑘𝛼 − 𝜔 − 𝑖𝜂)

 

𝑘

 (38)  

So, equation (36) becomes: 

 

(𝜔 + 𝑖𝜂)G11(𝜔)

= 1 + 𝜀1G11(𝜔) − 𝑉𝐿
2𝐴𝐿G11 − 𝑉𝐿

2𝐴𝐿G21𝑒
𝑖𝜙/2 − 𝑉𝑅

2𝐴𝑅G11

− 𝑉𝑅
2𝐴𝑅G21𝑒

−𝑖𝜙/2 

(39)  

The two leads are similar we can put, 𝑉𝐿
2 = 𝑉𝑅

2 = 𝑉2 then equation (38) will be reduced to: 

 

(𝜔 + 𝑖𝜂)G11(𝜔)

= 1 + G11[𝜀1 − 𝑉2(𝐴𝐿 + 𝐴𝐿)]

− 𝑉2G21[𝐴𝐿𝑒
𝑖𝜙/2 + 𝐴𝑅𝑒−𝑖𝜙/2] 

(40)  

2. 𝛼 = 𝐿, 𝑅    , 𝑖 = 2  , 𝑗 = 1 
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(𝜔 + 𝑖𝜂)G21
𝑟 (𝜔)

= 0 + 𝜀2G21
𝑟 (𝜔)

+ ∑[𝑉𝑘𝐿2 (−
𝑉𝐿1G11 + 𝑉𝐿2G21

(𝜀𝑘𝐿 − 𝜔 − 𝑖𝜂)
)

 

𝑘𝛼

+ 𝑉𝑘𝑅1 (−
𝑉𝑅1G11 + 𝑉𝑅2G21

(𝜀𝑘𝑅 − 𝜔 − 𝑖𝜂)
)] 

(41)  

And get use of equations (37) to find the element G21
𝑟  

 G21 = −𝑉2
G11[𝐴𝐿𝑒

−𝑖𝜙/2 + 𝐴𝑅𝑒𝑖𝜙/2]

[(𝜔 + 𝑖𝜂) − 𝜀2 + 𝑉2(𝐴𝐿 + 𝐴𝐿)]
 (42)  

Put equation (42) in equation (40), and after some work we get G11, the first element in the Green 

matrix. 

 

G11 = [𝜔 + 𝑖𝜂 − 𝜀1 + 𝑉2(𝐴𝐿 + 𝐴𝐿)

− 𝑉4 (
𝐴𝐿

2 + 𝐴𝑅
2 + 𝐴𝐿𝐴𝑅(𝑒𝑖𝜙 + 𝑒−𝑖𝜙)

[(𝜔 + 𝑖𝜂) − 𝜀2 + 𝑉2(𝐴𝐿 + 𝐴𝐿)]
)]

−1

 

(43)  

Using equation (34) 

 G11 =
1 − 𝑉2G21[𝐴𝐿𝑒

𝑖𝜙/2 + 𝐴𝑅𝑒−𝑖𝜙/2]

(𝜔 + 𝑖𝜂 − 𝜀1 + 𝑉2(𝐴𝐿 + 𝐴𝐿))
 (44)  

From equation (42), G21 will have the form 

 

G21 =

[
 
 
 
 
[(𝜔 + 𝑖𝜂) − 𝜀2 + 𝑉2(𝐴𝐿 + 𝐴𝐿)](𝜔 + 𝑖𝜂 − 𝜀1 + 𝑉2(𝐴𝐿 + 𝐴𝐿))

−𝑉2 [𝐴𝐿𝑒
−

𝑖𝜙
2 + 𝐴𝑅𝑒

𝑖𝜙
2 ]

+ 𝑉2 [𝐴𝐿𝑒
−

𝑖𝜙
2 + 𝐴𝑅𝑒

𝑖𝜙
2 ]

]
 
 
 
 
−1

 

(45)  

For simplicity we define:  

𝐴𝐿
2 = 𝐴𝑅

2 , 𝜂 = 0 
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 𝑉2[𝐴𝐿 + 𝐴𝑅] = 𝑉2 ∑
1

𝜀𝑘𝑟 − 𝜔 − 𝑖𝜂
≅ 𝑖

Γ

2

1

𝑘𝛼

 (46)  

Where Γ𝐿 , Γ𝑅 describes the tunneling coupling of the two quantum dots to left and right leads and 

given by the below equations[10]; 

 ΓR =
Γ

2
[

1  𝑒−
𝑖𝜙
2

   

𝑒
𝑖𝜙
2  1

] (47)  

 ΓL =
Γ

2
[

1  𝑒
𝑖𝜙
2

   

𝑒−
𝑖𝜙
2  1

] (48)  

From equations (44,46) we can get G11; 

 G11 =
(𝜔 − 𝜀2 + 𝑖

Γ
2)

(𝜔 − 𝜀1 + 𝑖
Γ
2) (𝜔 − 𝜀2 + 𝑖

Γ
2) +

Γ2

4 cos2 𝜙
2

 (49)  

In the same way can find G21, G12, G22, such as; 

 G21 =
−𝑖

Γ
2 cos

𝜙
2

(𝜔 − 𝜀1 + 𝑖
Γ
2) (𝜔 − 𝜀2 + 𝑖

Γ
2) +

Γ2

4 cos2 𝜙
2

 (50)  

 G22 =
(𝜔 − 𝜀1 + 𝑖

Γ
2)

(𝜔 − 𝜀1 + 𝑖
Γ
2) (𝜔 − 𝜀2 + 𝑖

Γ
2) +

Γ2

4 cos2 𝜙
2

 (51)  

 G22 =
(𝜔 − 𝜀1 + 𝑖

Γ
2)

(𝜔 − 𝜀1 + 𝑖
Γ
2) (𝜔 − 𝜀2 + 𝑖

Γ
2) +

Γ2

4 cos2 𝜙
2

 (52)  

 
GR(𝜔) = [

G11  G12

   
G21  G22

] 

 

(53)  

The retarded green function matrix will be: 
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GR(𝜔)

=
1

(𝜔 − 𝜀1 + 𝑖
Γ
2) (𝜔 − 𝜀2 + 𝑖

Γ
2) +

Γ2

4 cos2 𝜙
2 [

 
 
 
 (𝜔 − 𝜀2 + 𝑖

Γ

2
)  −𝑖

Γ

2
cos

𝜙

2   

−𝑖
Γ

2
cos

𝜙

2
 (𝜔 − 𝜀1 + 𝑖

Γ

2
)]
 
 
 
 

 
(54)  

 

With the advanced green function GA(𝜔) be; 

 

GA(𝜔)

=
1

(𝜔 − 𝜀1 + 𝑖
Γ
2) (𝜔 − 𝜀2 + 𝑖

Γ
2) +

Γ2

4 cos2 𝜙
2 [

 
 
 
 (𝜔 − 𝜀2 − 𝑖

Γ

2
)  𝑖

Γ

2
cos

𝜙

2   

𝑖
Γ

2
cos

𝜙

2
 (𝜔 − 𝜀1 − 𝑖

Γ

2
)]
 
 
 
 

 
(55)  

 

3. Transmission Rate Calculation 

  To find the transmission rate we use equation[8-12]; 

 𝑇(𝜔) = 𝑇𝑟{GA(𝜔)ΓRGR(𝜔)ΓL} (56)  

 𝑇(𝜔) = 𝑇𝑟 {[
G11

𝐴  G12
𝐴

   
G21

𝐴  G22
𝐴

] [
Γ11

𝑅  Γ12
𝑅

   
Γ21

𝑅  Γ22
𝑅

] [
G11

𝑅  G12
𝑅

   
G21

𝑅  G22
𝑅

] [
Γ11

𝐿  Γ12
𝐿

   
Γ21

𝐿  Γ22
𝐿

]} (57)  

 𝑇(𝜔) = T11 + T22 (58)  

We solve equation (57) with all the matrix element defined and the we get T𝑖𝑗 such as; 

 

T11 = [(𝜔 − 𝜀2)
2 −

𝛤2

4
− 𝑖𝛤 𝑐𝑜𝑠

𝜙

2
𝑒−

𝑖𝜙
2 (𝜔 − 𝜀2 − 𝑖

𝛤

2
)

+ 𝑖
𝛤

2
𝑐𝑜𝑠

𝜙

2
𝑒

𝑖𝜙
2 (𝜔 − 𝜀2 + 𝑖

𝛤

2
) +

𝛤2

2
𝑐𝑜𝑠2

𝜙

2

+ (𝜔 − 𝜀2 − 𝑖
𝛤

2
) (𝜔 − 𝜀1 + 𝑖

𝛤

2
) 𝑒−𝑖𝜙

+ 𝑖
𝛤

2
𝑐𝑜𝑠

𝜙

2
(𝜔 − 𝜀1 − 𝑖

𝛤

2
) 𝑒−

𝑖𝜙
2 ] 

(59)  
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T22 = [(𝜔 − 𝜀1)
2 +

𝛤2

4
+

𝛤2

2
𝑐𝑜𝑠2

𝜙

2
+ 𝑖

𝛤

2
𝑐𝑜𝑠

𝜙

2
𝑒

𝑖𝜙
2 (𝜔 − 𝜀2 + 𝑖

𝛤

2
)

+ (𝜔 − 𝜀2 − 𝑖
𝛤

2
) (𝜔 − 𝜀1 + 𝑖

𝛤

2
) 𝑒𝑖𝜙

− 𝑖𝛤 𝑐𝑜𝑠
𝜙

2
𝑒

𝑖𝜙
2 (𝜔 − 𝜀2 − 𝑖

𝛤

2
)

+ 𝑖
𝛤

2
𝑐𝑜𝑠

𝜙

2
(𝜔 − 𝜀1 + 𝑖

𝛤

2
) 𝑒−

𝑖𝜙
2 ] 

(60)  

Finally 𝑇(𝜔) will be; 

 𝑇(𝜔) =

Γ2 (4 cos2 𝜙
2

(𝜔 − 𝜀)2 + 4(
∆𝜀
2 )

2

sin2 𝜙
2)

[(𝜔 − 𝜀)2 − (
∆𝜀
2 )

2

−
Γ4

4 sin2 𝜙
2]

2

+ [Γ(𝜔 − 𝜀)]2

 (61)  

Where 𝜀 =
𝜀1+𝜀2

2
 , ∆𝜀 = 𝜀2 − 𝜀1 

4. Density of State Calculation 

   We get use of the diagonal elements of the Green’s function matrix to calculate the 

spectra densities 𝐴± , then the summing overall ± states we obtain 𝜌(𝜀) the density of 

states of the QDs where[7, 9]; 

 𝜌(𝜀) = ∑ 𝐴𝜎

 

𝜎=−,+

 (62)  

 𝐴− =
1

𝜋𝛬
cos2 (

𝜙

4
) Γ̃ [(𝑡𝑐 − 𝜀)2 + 4Γ𝐿Γ𝑅 sin4 (

𝜙

4
)] (63)  

 𝐴+ =
1

𝜋𝛬
sin2 (

𝜙

4
) Γ̃ [(𝑡𝑐 + 𝜀)2 + 4Γ𝐿Γ𝑅 cos4 (

𝜙

4
)] (64)  

 𝛬 = Γ̃2 [𝜀 − 𝑡𝑐 cos (
𝜙

2
)] + [(𝑡𝑐 + 𝜀)(𝑡𝑐 − 𝜀) + Γ𝐿Γ𝑅 sin2 (

𝜙

2
)]

2

 (65)  

 

𝜌(𝜀) =
1

𝜋𝛬
cos2 (

𝜙

4
) Γ̃ [(𝑡𝑐 − 𝜀)2 + 4Γ𝐿Γ𝑅 sin4 (

𝜙

4
)]

+
1

𝜋𝛬
sin2 (

𝜙

4
) Γ̃ [(𝑡𝑐 + 𝜀)2 + 4Γ𝐿Γ𝑅 cos4 (

𝜙

4
)] 

(66)  

Finally, the density of states for quantum dot molecule can be calculated from: 
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With Γ̃ = Γ𝐿 + Γ𝑅. 

 

 5. Result and Discussion  

      In this section, we studied the numerical calculation (using Matlab simulation) for the 

density of states and conductance at zero temperature of two coupled quantum dots 

connected symmetrically to leads in a parallel configuration under the effect of a magnetic 

flux. All our calculations are performed for a weak coupling 𝑡𝑐 = 0 regime and for strong 

coupling, where  𝑡𝑐 = Γ, (𝑡𝑐 ≤ Γ𝑅,𝐿), equation (67) was applied to get the density of states 

as a function of the energy (𝜀). 

Fig.2a represent the density of states of the DQD for (𝑡𝑐 = 0) and Fig.2 (b,c,d,e,f) for (𝑡𝑐 =

Γ) with (Γ𝐿 = Γ𝑅) and (Γ = Γ𝐿 + Γ𝑅) and for different magnetic flux.  

A special case for the density of state distribution when 𝑡𝑐 = 0 and 𝜙 = 0 (as shown in 

Fig.2a) the distributions that represented Lorentzians shape have peak centered at ε = 0, 

while for 𝜙 = π and 𝑡𝑐 = Γ (Fig.2b) the distributions are identical and represented by the 

superposition of two Lorentzians separated by 2𝑡𝑐. Also we have the same behaviors in  

Fig.2 (c,d) for 𝜙 = 0.5π, 1.5π and 𝑡𝑐 = Γ but the peaks are unidentical. 

The Dicke effect in parallel configuration occurs mostly in symmetrical case where (Γ𝐿 =

Γ𝑅 ) and whenever the magnetic close to the integer of flux quanta ( 𝜙 ≅ 2𝜋𝑛, 𝑛 =

𝑖𝑛𝑡𝑒𝑔𝑒𝑟). 

By changing the value of magnetic flux to be 𝜙 ≅ 2𝜋𝑛,  two peaks are exist in fig.2(e,f), 

and we begin to see a narrowing of one distribution and a widening of the other one. 
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The figures show two peaks, one is a wide states and the other is a narrow states. These 

states are interchanged their positions for different 𝜙, and it is obvious that the peaks in 

these figures are lying on (𝜀 = −2,2) depends on the value of tunneling coupling (tc). 

In particular, when the magnetic flux is near an integer number of flux quanta, the system 

is in the Dicke regime. From the densities of states, it can be deduced that the antibonding 

(bonding) state becomes progressively localized as the magnetic flux tends to an integer 

number of flux quanta. When the magnetic flux is exactly an integer, tunneling through the 

antibonding (bonding) state is totally suppressed and the bonding (antibonding) state is the 

only participating state in the transmission. The controlling of the decoherence processes 

with the magnetic field exhibited by the present system may have applications in quantum 

computing. 

To study the transport through the quantum dot system, the below equation is required for 

the conductance at zero temperature[8, 9]. 

 𝐺(𝜀) =
2𝑒2

ℎ
𝑇(𝜀) (67)  

The conductance spectrum is composed of Fano line shapes at the bonding and antibonding 

energies, and vice versa, depending on whether this number is even or odd, with their line 

broadenings controlled by the magnetic flux. The narrowing (broadening) of a line in the 

conductance can be interpreted as an increase (decrease) in the lifetime of the 

corresponding molecular state.  

So, Fig (3) demonstrates the development of conductance with changing the magnetic flux, 

these figures shows two peaks for each value of magnetic flux, these peaks are different in 

width and height.    

From these figs and for (𝜙 = 0,0.1𝜋, 1.9𝜋, 𝜋) two peaks are appear in the conductance 

spectra this behavior is similar to that of the density of states. 

In fig (3a) with (𝜙 = 0) no Fano peak exists. However if 𝜙 is increased from (𝜙 = 0), the 

channel connecting the decoupling state and the leads is opened and Fano interference 

exists[13].   
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Figure 1: Density of states (ρ) as a function of energy (ε), with 𝜞𝑳 = 𝜞𝑹 = 𝜞𝟎 = 𝟏, 𝜞 = 𝜞𝑳 + 𝜞𝑹 for 

(a) 𝒕𝒄 = 𝟎 and (b,c,d,e,f) 𝒕𝒄 =  𝜞, with different magnetic flux as shown in figure. 
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Figure 2: conductance (g) as a function of energy (ε), with 𝜞𝑳 = 𝜞𝑹 = 𝜞𝟎 = 𝟏, 𝜞 = 𝜞𝑳 + 𝜞𝑹 for 

(a) 𝒕𝒄 = 𝟎 and (b,c,d,e,f) 𝒕𝒄 = 𝜞, with different magnetic flux as shown in figure. 
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ي فانو وديكي في نقاط كمية مزدوجة متوازية مدمجة بين قطبين تأثير  

 عباس احمد هاشم، طالب عبدالنبي سلمان، هيفاء عبدالنبي جاسم 

 قسم الفيزياء، كلية العلوم، جامعة البصرة 

 

 المستخلص 

مع وجود تدفق  معدنية    اقطابمتصلة بالتوازي مع    نقطتين كميتينفي هذه المقالة ، تمت دراسة النقل الإلكتروني من خلال  

ظهور    لاحظنا.  ةلكثافة الحالات والتوصيل  مفصلةتم الحصول على صيغة  الحركة.  ومعادلة    باستخدام دالة كرينمغناطيسي  

بين  (Γ) قترانالاوالتحكم فيها عن طريق ضبط   DQD في أطياف التوصيل لنظام النقاط الكمومية المزدوجةتأثيري فانو وديك  

 .عن طريق تغيير التدفق المغناطيسي الخارجي النقطتين الكميتن والاقطاب
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