

# *r*-Domination Number for Some Special Graphs

Alaa A. Najim, Sara K. Abd $^{\ast}$ 

Department of Mathematics, College of Science, University of Basrah, Basra, Iraq.

\*Corresponding authors E-mail: scipg.sara.abd@uobasrah.edu.iq

Doi:10.29072/basjs.20230304

| ARTICLE INFO                 | ABSTRACT                                                                                |
|------------------------------|-----------------------------------------------------------------------------------------|
| Keywords                     | In this study, bi- and triple effect- domination expands into r-                        |
| <i>r</i> -domination number, | domination. Given a finite, nontrivial, simple, undirected graph $G$ with               |
| adjacent, dominating         | no isolated vertex, a subset $D \subseteq V$ is r-dominant if every $u \in D$           |
| set.                         | dominates r vertices from $V \setminus D$ with $r \ge 1$ . $\gamma_r(G)$ represents the |
|                              | minimum ultimate dominant set. For specific graphs, dominance is                        |
|                              | determined.                                                                             |

Received 1 Aug 2023; Received in revised form 20 Oct 2023; Accepted 22 Nov 2023, Published 31 Dec 2023

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

### 1. Introduction

Let G be a graph is a pair (V, E), where V = V(G) is the set of vertices or points and E = E(G)is the set of edges or lines and let n = |V(G)| be the order of the graph G and m = |E(G)| be the size of the graph G. The degree of a vertex u is the number of edges which incident on it denoted by deg(u). A vertex of degree zero is an isolated vertex and a vertex of degree one is a pendant, also said end vertex or leaf. The minimum degree of a graph G denoted by  $\delta(G)$  is the degree of the vertex with the least number of edges incident to it and the maximum degree of a graph Gdenoted by  $\Delta(G)$  is the degree of the vertex with the greatest number of edges incident to it, respectively. The open neighborhood of a vertex w is the set  $N(w) = \{u \in V, uw \in E(G)\}$  and closed neighborhood is the set  $N[u] = N(u) \cup \{u\}$ . Graph theory has several topics for more information about it see [1-3]. The study of domination problem is grown fast in graph theory. In our life, we can be representing any as a graph by represent its subjects as vertices and the communication between them represented as edges. For more information about of domination such as in [4,5]. A set  $D \subseteq V$  is called a dominating set of G if every vertex in  $v \in V \setminus D$  has a neighbor  $u \in D$ , that is  $N(v) \cap D \neq \emptyset \forall v \in V \setminus D$ . The domination number of a graph G is the cardinality of a minimum dominating set in G, denoted by  $\gamma(G)$  and this a notation was introduced by *Cockayne* and *Hedetniemi* in 1977 [6]. A subset  $D \subset V(G)$  is a bi-dominating set in G if every vertex  $v \in D$  dominates exactly two vertices in  $V \setminus D$ , such that  $|N(v) \cap V \setminus D| = 2$ , the cardinality of the minimum bi-dominating set in G is known as bi-domination number of G and denoted by  $\gamma_{hi}(G)$ . A subset  $D \subset V(G)$  is a triple effect dominating set in G if every vertex  $v \in$ D dominates exactly three vertices in  $V \setminus D$ , such that  $|N(v) \cap V \setminus D| = 3$ , the cardinality of the minimum triple effect dominating set in G is known as triple effect domination number of G and denoted by  $\gamma_{te}(G)$ . There are different types of domination, one can see [7-9]. We introduce new type of domination in graphs in this paper called the r-domination. Each vertex in an r-dominating set dominates exactly r vertices of the remaining vertices. Some bounds on r-domination number associated with complete graph, complete bipartite graph, wheel graph, tadpole graph, lollipop graph, barbell graph, complement of path graph, cycle graph, complete bipartite graph are introduced.

### Remark 1.1

a) [9] The path graph  $P_n$  and cycle graph  $C_n, n \ge 3$  has  $\gamma_{bi}(P_n) = \left\lfloor \frac{n}{3} \right\rfloor, n \ne 4$  and  $\gamma_{bi}(C_n) = \left\lfloor \frac{n}{3} \right\rfloor$ .

b) [7,10] For a wheel graph 
$$W_n (n \ge 3 \text{ and } n \ne 5), \gamma_{bi}(W_n) = 2 \left[\frac{n}{4}\right] \text{ and } \gamma_{te}(W_n) = \left[\frac{n}{3}\right].$$

**Definition 1.2** Let G be a finite, nontrivial, simple and undirected graph without isolated vertex. A dominating subset  $D \subseteq V$  is an r-dominating set in G if every  $u \in D$  dominates r vertices from  $V \setminus D$  such that  $|N(u) \cap V \setminus D| = r$  where r is positive integers such that  $r \ge 1$ . For example, see Figure 1.

**Definition 1.3** The cardinality of the minimum *r*-dominating set in *G* is known as *r*-domination number of *G* and denoted by  $\gamma_r(G)$ .



Figure 1: A minimum *r*-dominating set.

**Observation 1.4** For any finite simple G = (n, m) with *r*-dominating set *D* and *r*-domination number  $\gamma_r(G)$ , we have:

- a) The order of G is  $n \ge r + 1$ .
- b)  $\delta(G) \ge 1$  and  $\Delta(G) \ge r$ .
- c) Every  $v \in D$ ,  $deg(v) \ge r$ .
- d) Every support vertex  $v, v \in D$ .
- e)  $\gamma(G) \leq \gamma_r(G)$ .

## 2. r-Domination in Graphs

**Proposition 2.1** The path  $P_n$  and cycle graph  $C_n$  doesn't have an *r*-dominating set if  $r \ge 3$ . Proof. According to Observation 1.4. **Proposition 2.2** For a complete graph  $K_n (n \ge r + 1)$  we have  $\gamma_r (K_n) = n - r$ . Proof. A complete graph  $K_n$  of order  $n, (n \ge 2)$ , let the vertices of complete graph be  $V(K_n) = \{v_1, v_2, ..., v_n\}$ . Let  $D_r = D_1 \cup D_2 \cup D_3$ , since  $v_1, v_2, ..., v_{n-1}$  adjacent with  $v_n$  by one edge, the  $D_1 = \{v_1, v_2, ..., v_{n-1}\}$  is minimum single dominating set. Since  $v_1, v_2, ..., v_{n-2}$  adjacent with the set  $\{v_n, v_{n-1}\}$  by two edges, then  $D_2 = \{v_1, v_2, ..., v_{n-2}\}$  is minimum bi-dominating set. Since  $v_1, v_2, ..., v_{n-3}$  adjacent with the set  $\{v_n, v_{n-1}, v_{n-2}\}$  by three edges, the  $D_3 = \{v_1, v_2, ..., v_{n-3}\}$  is minimum triple effect dominating set. Hence,  $D_r = \{v_1, v_2, ..., v_{n-r}\}$  is r-dominating set, so every vertex in r-dominating set  $D_r$  dominates r vertices, then  $D_r$  contains all vertices of  $K_n$  unless r vertices. For example, see Figure 2.



Figure 2: A minimum *r*-dominating set in  $K_8$ .

**Theorem 2.3** For a complete bipartite graph  $K_{n,m}$ , we have

 $\gamma_r(K_{n,m}) = \begin{cases} n & \text{if } m = r \text{ , } n \ge 1\\ n + m - 2r & \text{if } n, m > r \end{cases}$ 

Proof. Let {  $V_1, V_2$  } be a partition of the complete bipartite graph  $K_{n,m}$  such that  $V_1 = \{v_1, v_2, \dots, v_n\}$  and  $V_2 = \{u_1, u_2, \dots, u_m\}$ .

A. If m = r and  $n \ge 1$  as follows:

Case 1. n = 1 then  $\gamma_r(K_{1,r}) = 1$ . Hence,  $D = \{v_1\}$  is minimum *r*-domination set. Case 2. n > 1, let  $\{v_1, v_2, ..., v_n\}$  dominating on  $\{u_1, u_2, ..., u_r\}$  such that  $D_r = |\{v_i\}_1^n| = n$  dominating set. Hence  $\gamma_r(K_{n,r}) = n$ .

B. If n, m > r, let  $D_r = D_1 \cup D_2 \cup D_3$ , since  $v_1, v_2, \dots, v_{n-1}$  adjacent with  $u_m$  by one edge and  $u_1, u_2, \dots, u_{m-1}$  adjacent with  $v_n$  by one edge then  $D_1 = \{v_1, v_2, \dots, v_{n-1}, u_1, u_2, \dots, u_{m-1}\}$  is minimum single dominating set. since  $v_1, v_2, \dots, v_{n-2}$  adjacent with the set  $\{u_m, u_{m-1}\}$  by

two edge and  $u_1, u_2, ..., u_{m-2}$  adjacent with the set  $\{v_n, v_{n-1}\}$  by two edge then  $D_2 = \{v_1, v_2, ..., v_{n-2}, u_1, u_2, ..., u_{m-2}\}$  is minimum bi-dominating set. since  $v_1, v_2, ..., v_{n-3}$  adjacent with the set  $\{u_m, u_{m-1}, u_{m-2}\}$  by three edge and  $u_1, u_2, ..., u_{m-3}$  adjacent with the set  $\{v_n, v_{n-1}, v_{n-2}\}$  by three edge then  $D_3 = \{v_1, v_2, ..., v_{n-3}, u_1, u_2, ..., u_{m-3}\}$  is minimum triple effect dominating set. Hence,  $D_r = \{v_1, v_2, ..., v_{n-r}, u_1, u_2, ..., u_{m-r}\}$  is dominating set. Where all the n - r vertices will dominate the r vertices of  $V_2$ . Also, all m - r vertices of  $V_2$  which are in  $D_r$  will dominate the r vertices of  $V_1$ , that belong to  $V \setminus D$ . Hence,  $\gamma_r(K_{n,m}) = n + m - 2r$ . For example, see Figure 3.



Figure 3: A minimum *r*-dominating set in  $K_{n,m}$ .

**Proposition 2.4** Let G be a wheel graph  $W_n$  with n + 1 vertices  $(n \ge 3)$  then:

$$\gamma_r (W_n) = \begin{cases} n & \text{if } r = 1\\ 1 & \text{if } r = n \text{, } r \ge 4 \end{cases}$$

Proof. By the definition of wheel graph there is a cycle  $C_n$  and complete graph  $K_1$ , let the vertices of this graph labeled by  $V(W_n) = \{v_1, v_2, ..., v_{n+1}\}$  such that  $\deg(v_1, v_2, ..., v_n) = 3$  and  $v_{n+1}$  is the vertex of degree *n*.

If r = 1, since every vertex in *D* dominates exactly one vertex from *V*\*D*. Then, *D* must be containing all vertices of  $W_n$  unless the vertex of  $K_1$ . Hence,  $D_1 = \{v_1, v_2, ..., v_n\}$  is minimum *r*-dominating set.

If n = r, let  $v_{n+1}$  adjacent with  $v_1, v_2, ..., v_n$  by one edge. Hence,  $D_r = \{v_{n+1}\}$  is minimum *r*-dominating set. If  $n > r(n, r \ge 4)$  by definition of wheel, since  $\deg(v_1, v_2, ..., v_n) = 3$  then  $W_n$  has no *r*-dominating set. For example, see Figure 4.



Figure 4: A minimum *r*-dominating set in  $W_8$ .

**Proposition 2.5** The lollipop graph  $L_{m,n}$  has *r*-dominating set if and only if m = r and  $n = 1, r \ge 3$  where,  $\gamma_r(L_{m,n}) = 1$ .

Proof. By the definition of lollipop graph there is a complete graph  $K_m$  and path  $P_n$ , then  $L_{m,1}$  has  $K_m$  and  $P_1$ , let  $V(L_{m,1}) = \{v_1, v_2, ..., v_{m+1}\}$  such that  $v_2$  adjacent the vertex of a path. Hence,  $D_r = \{v_2\}$  is minimum *r*-dominating set. If m > r and n > 1, then  $L_{m,1}$  has no *r*-dominating set.

**Proposition 2.6** For the barbell graph  $B_{n,n}$ , we have  $\gamma_r(B_{n,n}) = 2n - 2r$ ,  $n \ge r + 1$ . Proof. By the definition of barbell graph is a graph formed by connecting two copies of a complete graph  $K_n$  by a bridge, let  $V(B_{n,n}) = \{v_1, v_2, ..., v_n, u_1, u_2, ..., u_n\}$ , since  $\gamma_r(K_n) = n - r$  *r* according to proposition (2.2). Then,  $D_r = \{v_1, v_2, ..., v_{n-r}, u_1, u_2, ..., u_{n-r}\}$  is dominating set. Hence, it's clear then  $\gamma_r(B_{n,n}) = (n - r) + (n - r) = 2n - 2r$ .

**Theorem 2.7** Let  $P_n$  is a path graph then  $\overline{P_n}$  has *r*-domination number if and only if  $r + 3 \le n \le 2r + 3$  such that :

$$\gamma_r(\overline{P_n}) = \begin{cases} 2 & \text{if } n = r+3, r+4\\ n-(r+2) & \text{if } n = r+5, r+6, \dots, 2r+3 \end{cases}$$

Where  $\overline{P_n}$  has no *r*-domination set for n < r + 3 or n > 2r + 3.

Proof. Since  $\deg(v_i) \le r - 1 \forall v_i \in \overline{P_i}, i = 2, 3, ..., r + 1$ , then  $\overline{P_n}$  has no *r*-domination, where n = r + 2 if  $D = \{v_1\}$ , there is one vertex is not dominated by D. If  $D = \{v_{r+2}\}$ , there is one vertex  $\overline{\mathbb{C} \oplus \mathbb{C}}$ . This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) 461

(http://creativecommons.org/licenses/by-nc/4.0/).

is not dominated by *D*. If  $D = \{v_1, v_{r+2}\}$ . There every one of them dominates two vertices, all above cases are contraction our definition, so  $\overline{P}_{r+2}$  has no *r*-domination. If n = r + 3, either  $D = \{v_1, v_{r+3}\}$  or  $D = \{v_i, v_{i+1}\}$ ; i = 2, 3, ..., r + 1. If n = r + 4, then  $D = \{v_i, v_j\}$  such that  $d(v_i, v_j) = 2$  and  $i, j \neq 1, r + 4$ . If n = r + 5, r + 6, ..., 2r + 3, let  $D = \{v_{2i}, i = 1, 2, ..., n - (r + 2)\}$  every vertex in *D* dominates r vertices, in all above cases, *D* is a minimum *r*-dominating set. Thus, *D* is a  $\gamma_r - set$  of  $\overline{P}_n$ .

If n > 2r + 3, then every dominating set *D* has at least one vertex dominates less then *r* vertices or dominates more than *r* vertices.

**Theorem 2.8** Let  $C_n$  be a cycle graph of order  $n \ge 3$ , then  $\overline{C_n}$  has *r*-domination number if and only if  $r + 3 \le n \le 2r + 4$  and n = 3(r + 1), such that :

$$\gamma_r(\overline{C_n}) = \begin{cases} 2 & \text{if } n = r+3\\ n - (r+2) & \text{if } n = r+4, r+5, \dots, 2r+4\\ 2r+2 & \text{if } n = 3(r+1) \end{cases}$$

Proof. Since deg $(v_i) \le r - 1 \forall v_i \in \overline{C_i}$ , i = 3, 4, ..., r + 1, then  $\overline{C_n}$  has no *r*-domination. If n = r + 3, then *D* have any two consecutive vertices for  $\overline{C_{r+3}}$ . If n = r + 4 then  $D = \{v_i, v_j\}$  such that  $d(v_i, v_j) = 3$ . If n = r + 5, r + 6, ..., 2r + 4, let  $D = \{v_{2i-1}, i = 1, 2, ..., n - (r + 2)\}$  then all vertices of *D* is adjacent together and dominate exactly *r* vertices. If n = 3(r + 1), let  $D = \{v_i, v_{i+1}, i = 1, 4, 7, 10, ..., n - 2\}$ , then all vertices of *D* is adjacent together and dominate exactly *r* vertices. In all above cases. Hence *D* is a minimum *r*-dominating set. Thus, *D* is a  $\gamma_r - set$  of  $\overline{C_n}$ .

If  $2r + 5 \le n \le 3r + 2$  and n > 3r + 4, then every dominating set *D* has at least one vertex dominates less then *r* vertices or dominates more than *r* vertices.

**Theorem 2.9** Let  $K_{n,m}$  be a bipartite graph, then  $\overline{K}_{n,m}$  has *r*-domination number if and only if n > r and m > r such that  $\gamma_r(\overline{K}_{n,m}) = n + m - 2r$ 

Proof. The vertices for this graph are labeled by:  $V(\overline{K}_{n,m}) = \{v_i^j, i = 1, 2, 3, ..., n, j = 1, 2, ..., n, j = 1, ..., n, j =$ 

1, 2, 3, ..., *m*}. If n > r and m > r then  $\overline{K}_{n,m}$  contains two graphs  $K_n$  and  $K_m$ , let  $D = \{v_i^j, i = 1, 2, 3, ..., n - r, j = 1, 2, 3, ..., m - r\}$  then from proposition (2.2.) for a complete graph  $K_n$  and  $K_m$  ( $n \ge r + 1$ ), since  $\gamma_r(K_n) = n - r$  and  $\gamma_r(K_m) = m - r$  such that  $\overline{K}_{n,m}$  and every

graph of them has *r*-dominating. Hence, it's clear that  $\gamma_r(\overline{K}_{n,m}) = (n-r) + (m-r) = n + m - 2r$ .

### **3.** Conclusions

In conclusion, this research has made significant contributions to the field of graph theory by expanding the concepts of bi-domination and triple effect domination to investigate novel type of domination is r –domination number. Our investigations have yielded valuable information about how r-domination behaves in different graph structures, including path, cycle, complete, complete bipartite, wheel, lollipop, and barbell graphs. Furthermore, we have extended our analysis to complement graphs, enriching our understanding of r –domination in various graph families.

### References

- [1] N. A. Hatoo, A. A. Najim, p-Graphs Associated with Some Groups and Vice Versa, Bas. J. Sci., 40 (2022) 321–330, https://doi.org/10.29072/basjs.20220205
- T. Q. Ibraheem, A. A. Najim, On topological spaces generated by graphs and vice versa, J. Al-Qadisiyah Computer Sci. Math., 13 (2021) 13–24, https://doi.org/10.29304/jqcm.2021.13.3.827
- [3] O. Ore, Theory of graphs, in Colloquium Publications, 1962, https://doi.org/10.1090/coll/038
- [4] T. W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of domination in graphs, CRC press, 1998, https://doi.org/10.1007/978-3-031-09496-5\_2
- [5] M. A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math Algorithms Appl., 13 (2021) 2150009, https://doi.org/10.1142/S1793830921500099
- [6] E. J. Cockayne, S. T. Hedetniemi, Towards a theory of domination in graphs, Networks (N Y)., 7 (1977) 247–261, https://doi.org/10.1002/net.3230070305
- [7] Z. H. Abdulhasan, M. A. Abdlhusein, Triple effect domination in graphs, AIP Conf Proc., 2386 (2022) 060013–060013-5, https://doi.org/10.1063/5.0066872
- [8] S. J. Radhi, A. E. Hashoosh, others, The arrow domination in graphs, Int. J. Nonlinear Anal. Appl., 12 (2021) 473–480, https://doi.org/10.22075/ijnaa.2021.4826

- M. N. Al-Harere, A. T. Breesam, Further results on bi-domination in graphs, AIP Conf Proc., 2096 (2019) 020013–020013-9, https://doi.org/10.1063/1.5097810
- [10] M. N. Al-Harere, A. T. Breesam, Variant Typesof Domination in Spinner Graph, Al-Nahrain J. Sci., (2019)127–133, https://doi.org/10.22401/ANJS.00.2.18

هيمنة r لبعض انواع البيانات الخاصة

سارة كاظم عبد وعلاء عامر نجم

قسم الرياضيات كلية العلوم جامعة البصرة

#### المستخلص

في هذا البحث ، قدمنا نوع جديد من الهيمنة في البيانات اسمها هيمنة r ، قمنا بتوسيع الهيمنة الثنائية وهيمنة التأثير الثلاثي في البيانات. لتكن G رسم بياني منتهي وبسيط . D مجموعة جزئية من مجموعة الرؤوس V فتكون مجموعة مهيمنة r في G اذا كان كل محموعة علي منتهي وبسيط . D مجموعة جزئية من مجموعة الرؤوس V فتكون مجموعة مهيمنة r في G اذا كان كل  $U \in D$  يهيمن على r من الرؤوس في  $V \setminus D$  . يرمز للحد الأدنى من المجموعة المهيمنة r بالرمز (G) ،  $\gamma_r$  ( r مهيمنة r ليعنه من مجموعة المهيمنة r من مجموعة معيمنة r في r اذا كان كل من المجموعة المهيمنة r من الرؤوس المواع البيانات الخاصة .