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Abstract 

In this article, we present the numerical investigation for compressible Newtonian 

flow in two dimensional axisymmetric channel. Galerkin finite element method is 

applied to accommodate compressible and incompressible flows. A continuity 

equation and time-dependent conservation of momentum equations are used to 

describe the motion of the fluid, which are maintained in the cylindrical coordinate 

system (axisymmetric). To meet the method analysis, Poiseuille flow along a circular 

channel under an isothermal state is used as a simple test problem. This test is 

conducted by taking a circular section of the pipe. Comparision between compressible 

and incompressible results in terms of convergence has been conducted for axial 

velocity and pressure. Findings reveal that, convergence-rates of velocity and pressure 

is faster an incompressible case compared to compressible. In addition, the level of  

velocity convergence is higher than pressure for both compressible and 

incompressible. Moreover, the low level of Mach number demonstrates that 

piecewise-constant density interpolation is equitable to linear density interpolation 
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1. Introduction  

       In this study, numereical investigation of compressible Newtonian laminar flow is conducted 

based a Galerkin finite element (𝐺𝐹𝐸𝑀) method. Here, compressible Newtonian equations are 

expressed as a combination of two differential equations; called continuity and time-dependent 

conservation of momentum equations. These equations are presented in this study in cylindrical 

coordinate system (Axisymmetric flow) (for more details see [1]). Particularly, the effects of 

compressibility occur in both gases and liquids through the variation of density. Density itself 

depends on temperature, pressure and concentration levels of fluids [2]. Flows of liquid 

materials, at moderate pressure levels, can be considered as incompressible. Nevertheless, at 

large pressure-differences, such flows may display some mild compressibility effects. Mach 

number, the ratio of fluid velocity to the speed of sound (Ma =u/c), characterizes the influence of 

compressibility on a flow field [3-4]. Flows at low Mach number may be described as 

incompressible, whilst for those at moderate to high Mach number, compressibility effects will 

be prominent. Recently, compressibility plays an important role in some applications such as: 

steam turbine, polymer extrusion, injection molding with polymer melts and exploration of 

petroleum (for more details see [5-8]). Moreover, in capillary rheometry, compressibility may 

have a significant influence on features such as the time-dependent pressure changes within a 

system (see piston-driven flows [9]).   Extensive literature studies on the computational solution 

of flows that manifest compressibility effects have been conducted. In this context, the finite 

element method played essential role for solving various problems. Under this method, different 

techniques  have appeared such as Streamline-Upwind/Petrov-Galerkin (SUPG) algorithm, 

Galerkin Least-Square (GLS) and Taylor-Galerkin/ pressure-correction scheme (TGPCM) [10-

11]. In this context, one can see various investigations of the compressible flows that have been 

conducted based on finite element methods. In addition, the numerical investigations of 

incompressible Newtonian flows on the structure of the incompressible through a channel have 

been widely conducted compared to (see for example [12]). In contrast, one can see that a few 

numerical studies related to compressible axisymmetric flows past a channel have been 

introduced due to the extreme difficulties. Thus this study is concerned with the investigation of 

this type of flows.   

http://creativecommons.org/licenses/by-nc/4.0/


, 2021354-339), 3(Vol. 39                                                                       Basrah Journal of Science 

341 
 

                     This article is an open access article distributed under 

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license) 

).nc/4.0/-http://creativecommons.org/licenses/by( 

The main difficulty in developing a numerical algorithm to treat the compressible flows comes 

from that the differential equations turn to a hyperbolic-parabolic system, while those for 

incompressible flow are an elliptic-parabolic. In addition, the compressible equations for low 

Mach number may be associated with large disparity between the acoustic wave-speed, (u + c), 

and the entropy wave convected at the fluid-speed, (u) [13-15]. Here, the condition number for 

the equation system is related to the reciprocal of the Mach number. 

      The present study aims to present a study on the compressible Newtonian fluid with a 

constant viscosity. The novelty here is to study the temporal convergence-rate of the system 

solution that is taken to be steady state, compressible, axisymmetric, and laminar, which did not 

address by researchers previously. In this context, Poiseuille(𝑃𝑠) flow along a two dimensional 

planar straight channel, under isothermal condition is studied. The main results of current study 

focused comparison against incompressible counterparts in the temporal convergence rates for 

the components of the solution. Furthermore, the rate of covergence for three different meshes 

are compared. Numerical treatments are presented for governing system, where we have utilized 

the Galerkin finite element. The unequal order primitive variable of velocity components and 

pressure will be employed as the main approach. For the numerical solution, the iterative method 

of Newton-Raphson will be used to solve the set of non-linear equations and the backward 

different scheme will be employed as the time-integration approach to deal with the time 

dependent term. In the next section, the governing equations of the Newtonian flows are 

introduced in the cylindrical coordinates. Since these equations must be studied numerically, the 

numerical method is characterized in Section 3. The problem discretisation and the related 

numerical results are presented in Section 4 and 5, respectively. 

2. Mathematical modeling 

     The dimensionless form of continuity and momentum equations of compressible Newtonian 

flow under isothermal condition and omitting the body forces can be given in cylindrical 

coordinates as:  
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𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑢𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑢𝜃) +

𝜕

𝜕𝑧
(𝜌𝑢𝑧) = 0. (1) 

 r-direction  

 𝜌(
𝜕𝑈𝑟

𝜕𝑡
+ 𝑈𝑟

𝜕𝑈𝑟

𝜕𝑟
+

𝑈𝜃

𝑟

𝜕𝑈𝑟

𝜕𝜃
+ 𝑈𝑧

𝜕𝑈𝑟

𝜕𝑧
−

𝑈𝜃𝑈𝜃

𝑟
) 

 = −
𝜕𝑝

𝜕𝑟
+

4𝜇

3

𝜕2𝑈𝑟

𝜕𝑟2 +
4𝜇

3𝑟

𝜕𝑈𝑟

𝜕𝑟
−

4𝜇

3𝑟2 𝑈𝑟 +
𝜇

3𝑟

𝜕2𝑈𝜃

𝜕𝑟𝜕𝜃
−

4𝜇

3𝑟2

𝜕𝑈𝜃

𝜕𝜃
 

 +
𝜇

𝑟2

𝜕2𝑈𝑟

𝜕𝜃2 + 𝜇
𝜕2𝑈𝑟

𝜕𝑧2 +
𝜇

3

𝜕2𝑈𝑧

𝜕𝑟𝜕𝑧
−

𝜇

𝑟2

𝜕𝑈𝑟

𝜕𝑟
 (2) 

 𝜽-direction  

 𝜌(
𝜕𝑈𝜃

𝜕𝑡
+ 𝑈𝑟

𝜕𝑈𝜃

𝜕𝑟
+

𝑈𝜃

𝑟

𝜕𝑈𝜃

𝜕𝜃
+ 𝑈𝑧

𝜕𝑈𝜃

𝜕𝑧
+

𝜕𝑈𝑟𝑈𝜃

𝑟
) 

 = −
1

𝑟

𝜕𝑝

𝜕𝜃
+

𝜇

3𝑟

𝜕2𝑈𝑟

𝜕𝑟𝜕𝜃
+

7𝜇

3𝑟2

𝜕𝑈𝑟

𝜕𝜃
+

4𝜇

3𝑟2

𝜕2𝑈𝜃

𝜕𝜃2  

 +
𝜇

3𝑟

𝜕2𝑈𝑧

𝜕𝜃𝜕𝑧
+ 𝜇

𝜕2𝑢𝜃

𝜕𝑧2 + 𝜇
𝜕2𝑢𝜃

𝜕𝑟2 +
𝜇

𝑟

𝜕𝑈𝜃

𝜕𝑟
−

𝜇

𝑟2 𝑈𝜃 (3) 

 z-direction  

 𝜌(
𝜕𝑈𝑧

𝜕𝑡
+ 𝑈𝑟

𝜕𝑈𝑧

𝜕𝑟
+

𝑈𝜃

𝑟

𝜕𝑈𝑧

𝜕𝜃
+ 𝑈𝑧

𝜕𝑈𝑧

𝜕𝑧
) 

 = −
𝜕𝑝

𝜕𝑧
−

2𝜇

3

𝜕2𝑈𝑟

𝜕𝑟𝜕𝑧
+

𝜇

3𝑟

𝜕𝑈𝑟

𝜕𝑧
+

𝜇

3𝑟

𝜕2𝑈𝜃

𝜕𝜃𝜕𝑧
+

4𝜇

3

𝜕2𝑈𝑧

𝜕𝑧2  

 +𝜇
𝜕2𝑈𝑧

𝜕𝑟2
+ 𝜇

𝜕2𝑈𝑧

𝜕𝑟𝜕𝑧
+

𝜇

𝑟2

𝜕2𝑈𝑧

𝜕𝜃2
+

𝜇

𝑟

𝜕𝑈𝑧

𝜕𝑟
 (4) 

Where, 𝑢𝑟 , 𝑢𝜃 and 𝑢𝑧 are the velocity components in 𝑟-direction, 𝜃-direction and 𝑧-direction, 

respectively, 𝑝 is the pressure and 𝜌 is the fluid density (for more details see [16-22]).  

3. Numerical method 

In this study, Galerkin finite element method (GFEM) is used to solve the related governing 

equations (2)-(4). This approach begins with finding the weak form of the continuity and 

momentum equations by using appropriate weight functions, then integrating over a typical 

domain and substituting assumed approximate solutions, to get the the following matrix form  
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 [𝑀][𝑈𝑟] + [𝐶𝑟(𝑈𝑟)][𝑈𝑟] + [𝐶𝑧(𝑈𝑧)][𝑈𝑟] − [𝐶𝜃][𝑈𝜃] − [𝑄𝑟][𝜌] +
4

3
[𝐾𝑟𝑟

] +
4

3
[𝐾𝑟][𝑈𝑟] +

4

3
[𝑞𝑟][𝑈𝑟] + [𝐾𝑧𝑧

][𝑈𝑟] +
1

3
[𝐾𝑟𝑧

][𝑈𝑧] = [0]                                                                                 (5)  

           [𝑀][𝑈𝜃] + [𝐶𝑟(𝑈𝑟)][𝑈𝜃] + [𝐶𝑧(𝑈𝑧)][𝑈𝜃] − [𝐶𝑟][𝑈𝜃] + [𝐾𝑧𝑧
][𝑈𝜃]+[𝐾𝑟𝑟

][𝑈𝜃] + [𝐾𝑟][𝑈𝜃] + [𝑞𝜃][𝑈𝜃] = [0]   

                                                                                                                                                                (6) 

 [𝑀][𝑈𝑧] + [𝐶𝑟(𝑈𝑟)][𝑈𝑧] + [𝐶𝑧(𝑈𝑧)][𝑈𝑧] − [𝑄𝑧][𝜌] −
2

3
[𝐾𝑟𝑧][𝑈𝑟] +

1

3
[𝐾𝑧][𝑈𝑟] +

4

3
[𝐾𝑧𝑧

][𝑈𝑧] 

+[𝐾𝑟𝑟
][𝑈𝑧] + [𝐾𝑟𝑧

][𝑈𝑧] + [𝐾𝑟][𝑈𝑧] = [0]                                                                                  (7)  

[𝑀𝜌][𝜌.] + [𝑄1][𝑈𝑟] + [𝑞1][𝜌] + [𝑆][𝑈𝑟] + [𝑄2][𝑈∀] + [𝑞2][𝜌] + [𝑄3][𝑈𝑧] + [𝑞3][𝜌] = [0]                                                                                                                               

                                                                                                                                                 (8) 

where, 

[𝑄] = [𝐶𝑟(𝑈𝑟)] + [𝐶𝜃(𝑈𝜃)] + [𝐶𝑧(𝑈𝑧)] + [𝑄𝑟] + [𝑄𝜃] + [𝑄𝑧] + [𝐾22] + [𝐾𝑟] + [𝐾𝑟𝑟] + [𝐾𝑧𝑧] 

Here, the quadratic shape functions that proposed for velocity components can be defined as:  

 

[
 
 
 
 
 
𝜓1

𝜓2

𝜓3

𝜓4

𝜓5

𝜓6]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐿1
2 − 𝐿1𝐿2 − 𝐿1𝐿3

𝐿2
2 − 𝐿2𝐿3 − 𝐿2𝐿1

𝐿3
2 − 𝐿3𝐿1 − 𝐿3𝐿2

4𝐿1𝐿2

4𝐿2𝐿3

4𝐿3𝐿1 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
1 0 0 −1 0 −1
0 1 0 −1 −1 0
0 0 1 0 −1 −1
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4 ]

 
 
 
 
 

[
 
 
 
 
 
 
𝐿1
2

𝐿2
2

𝐿3
2

𝐿1𝐿2

𝐿2𝐿3

𝐿1𝐿3]
 
 
 
 
 
 

 . (9) 

In contrast, a convenient linear shape function is proposed for pressure and density, such that  

                                      [

𝜙1

𝜙2

𝜙3

] = [
𝐿1

𝐿2

𝐿3

]  . (10) 

where, 𝐿1, 𝐿2, and 𝐿3 are local triangular coordinates. 

Correspondingly, we can dfine the matrices of the above system as follows: 

The mass matrix is given by:  

             [𝑇] = 2𝜋𝑟𝑚𝐴[𝐾][𝑀][𝑀𝑇][𝐾𝑇]. 
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And the convective matrices can be expressed as:  

       [𝑌𝑟(𝑈𝑟)] = 2𝜋𝑟𝑚𝐴[𝐾][𝑀][𝑀𝑇][𝐾𝑇][𝑈𝑟][𝑁
𝑇][𝐵𝑇][𝐾𝑇] . 

       [𝑌𝜃(𝑈𝜃)] = [0] . 

       [𝑌𝑧(𝑈𝑧)] = 2𝜋𝑟𝑚𝐴[𝐾][𝑀][𝑀𝑇][𝐾𝑇][𝑈𝑧][𝑁
𝑇][𝐶𝑇][𝐾𝑇] . 

       [𝑆𝑟(𝑈𝑟)] = 2𝜋𝐴[𝐾][𝑀][𝑀𝑇][𝐾𝑇][𝑈𝑟][𝑀
𝑇][𝐾𝑇] . 

       [𝑆𝜃(𝑈𝜃)] = −2𝜋𝐴[𝐾][𝑀][𝑀𝑇][𝐾𝑇][𝑈𝜃][𝑀𝑇][𝐾𝑇]. 

Also, the diffusion matrices are gathered as:  

        [𝐻𝑟] = 2𝜋𝑟𝑚𝐴
1

𝑅𝑒
[𝐾][𝐵][𝑁][𝑁𝑇][𝐵𝑇][𝐾𝑇] 

        [𝐻𝜃] = [0] 

        [𝐻𝑧] = 2𝜋𝑟𝑚𝐴
1

𝑅𝑒
[𝐾][𝐶][𝑁][𝑁𝑇][𝐶𝑇][𝐾𝑇] 

        [𝐷𝑟] = −2𝜋𝐴
1

𝑅𝑒
[𝐾][𝑀][𝑁𝑇][𝐵𝑇][𝐾𝑇] 

        [𝐷𝜃] = [0] 

        [𝑇𝑎] = 2𝜋
1

𝑟𝑚
𝐴

1

𝑅𝑒
[𝐾][𝑀][𝑀𝑇][𝐾𝑇]. 

The gradient matrices are given by:  

        [𝐹𝑟] = 2𝜋𝑟𝑚𝐴[𝐾][𝐵][𝑁][𝑁𝑇] 

        [𝐹𝜃] = [0] 

        [𝐹𝑧] = 2𝜋𝑟𝑚𝐴[𝐾][𝐶][𝑁][𝑁𝑇] 

        [𝐹𝑎] = 2𝜋𝐴[𝑁][𝑀𝑇][𝐾𝑇] 

               [𝐸𝜌] = [

𝐽1
𝐽2
𝐽3

],  [𝐵𝜌] =
1

2𝐴
[

𝑏1

𝑏2

𝑏3
],  [𝐶𝜌] =

1

2𝐴
[

𝐶1

𝐶2

𝐶3
],  
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where, 𝐴 is the area of the triangular element and 𝑟𝑚 =
1

3
(𝑟1 + 𝑟2 + 𝑟3),  

and 

 [𝐾] =

[
 
 
 
 
 
1 0 0 −1 0 −1
0 1 0 −1 −1 0
0 0 1 0 −1 −1
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4 ]

 
 
 
 
 

   .  [𝑀] =

[
 
 
 
 
 
 
𝐿1
2

𝐿2
2

𝐿3
2

𝐿1𝐿2

𝐿2𝐿3

𝐿1𝐿3]
 
 
 
 
 
 

       [𝑁] = [
𝐿1

𝐿2

𝐿3

] 

 [𝐵] =
1

2𝐴

[
 
 
 
 
 
2𝛽1 0 0
0 2𝛽2 0
0 0 2𝛽3

𝛽2 𝛽1 0
0 𝛽3 𝛽2

𝛽3 0 𝛽1 ]
 
 
 
 
 

  . [𝐶] =
1

2𝐴

[
 
 
 
 
 
2𝛾1 0 0
0 2𝛾2 0
0 0 2𝛾3

𝛾2 𝛾1 0
0 𝛾3 𝛾2

𝛾3 0 𝛾1 ]
 
 
 
 
 

 

such that 𝛽𝑖 and 𝛾𝑗  .  𝑖 . 𝑗 = 1 .2 .3 are coefficients defined in terms of coordinates of triangular 

element. In addition, to complete the numerical building the Newton-Raphson method has been 

used to address the nonlinear part based on the system backward Euler scheme (see [23,24]). In 

this context, the system of equations is given by:  

[𝑇][�̇�𝑟] + [
𝜕𝑅1

𝜕𝑈𝑟
][Δ𝑈𝑟] + [

𝜕𝑅1

𝜕𝑈𝜃
][Δ𝑈𝜃] + [

𝜕𝑅1

𝜕𝑈𝑧
][Δ𝑈𝑧] + [

𝜕𝑅1

𝜕𝑃
][Δ𝑃] + [

𝜕𝑅1

𝜕𝜌
][Δ𝜌] =  −[𝑅1] (11) 

[𝑇][�̇�𝜃] + [
𝜕𝑅2

𝜕𝑈𝑟
][Δ𝑈𝑟] + [

𝜕𝑅2

𝜕𝑈𝜃
][Δ𝑈𝜃] + [

𝜕𝑅2

𝜕𝑈𝑧
][Δ𝑈𝑧] + [

𝜕𝑅2

𝜕𝑃
][Δ𝑃] + [

𝜕𝑅2

𝜕𝜌
][Δ𝜌] = −[𝑅2] (12) 

[𝑇][�̇�𝑧] + [
𝜕𝑅3

𝜕𝑈𝑟
][Δ𝑈𝑟] + [

𝜕𝑅3

𝜕𝑈𝜃
][Δ𝑈𝜃] + [

𝜕𝑅3

𝜕𝑈𝑧
][Δ𝑈𝑧] + [

𝜕𝑅3

𝜕𝑃
][Δ𝑃] + [

𝜕𝑅3

𝜕𝜌
][Δ𝜌] = −[𝑅3] (13) 

[𝑇][�̇�] + [
𝜕𝑅4

𝜕𝑈𝑟
][Δ𝑈𝑟] + [

𝜕𝑅4

𝜕𝑈𝜃
][Δ𝑈𝜃] + [

𝜕𝑅4

𝜕𝑈𝑧
][Δ𝑈𝑧] + [

𝜕𝑅4

𝜕𝑃
][Δ𝑃] + [

𝜕𝑅4

𝜕𝜌
][Δ𝜌] = −[𝑅4] (14) 

 Where, 

𝑅1 = [𝐶𝑟(𝑈𝑟)][𝑈𝑟] + [𝐶𝑧(𝑈𝑧)][𝑈𝑟] +
4

3
[𝐾𝑟𝑟][𝑈𝑟] +

4

3
[𝐾𝑟][𝑈𝑟] +

4

3
[𝑞𝑟] 

 [𝑈𝑟] + [𝐾𝑟𝑟][𝑈𝑟] + [𝐶𝜃][𝑈𝜃] +
1

3
[𝐾𝑟𝑧][𝑈𝑧] − [𝑄𝑟][𝑃] (15) 
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𝑅2 = [𝐶𝑟(𝑈𝑟)][𝑈𝜃] + [𝐶𝑧(𝑈𝑧)][𝑈𝜃] + [𝐶𝑟][𝑈𝜃] + [𝐾𝑧𝑧][𝑈𝜃] + [𝐾𝑟𝑟] 

 [𝑈𝜃] + [𝐾𝑟][𝑈𝜃] + [𝑞𝑟][𝑈𝜃] (16) 

𝑅3 = −
2

3
[𝐾𝑟𝑧][𝑈𝑟] +

1

3
[𝐾𝑧][𝑈𝑟] + [𝐶𝑟(𝑈𝑟)][𝑈𝑧] + [𝐶𝑧(𝑈𝑧)][𝑈𝑧] + 

[𝐶𝑧(𝑈𝑧)][𝑈𝑧] +
4

3
[𝐾𝑧𝑧][𝑈𝑧] + [𝐾𝑟𝑟][𝑈𝑧] + [𝐾𝑟𝑧][𝑈𝑧] + [𝐾𝑟][𝑈𝑧] − [𝑄𝑧][𝑃] (17)  

 𝑅4 = [𝑄1][𝑈𝑟] + [𝑆][𝑈𝑟] + [𝑄3][𝑈𝑧] + [𝑞1][𝜌] + [𝑞3][𝜌] (18) 

such that, [𝑄] is reduced to the form:  

 [𝑄] = [𝐶𝑟(𝑈𝑟)] + [𝐶𝜃(𝑈𝜃)] + [𝐶𝑧(𝑈𝑧)] + [𝑄𝑟] + [𝑄𝜃] + [𝑄𝑧] 

 +[𝐾22] + [𝐾𝑟] + [𝐾𝑟𝑟] + [𝐾𝑧𝑧] (19) 

  

4. Problem discretization 

In this article, the problem of the flow is selected to be a 2D channel connected to upstream and 

downstream cylinders. In this context, a Poiseuille flow through a 2D-axisymmetric channel 

considered, for an isothermal, compressible Newtonian fluid. Three finite element meshes, 𝑀1 =

10 × 10, 𝑀2 = 20 × 20 and 𝑀3 = 30 × 30 are used for this purpose (see Figure1(a),(b),(c)). 

The results are shown for tolerance criteria taken as 𝑇𝑂𝐿 = 10−10 and typical Δ𝑡 is 𝑂(10−3). 

Mesh characteristics are introduced in Table 1.   

 

 

    Mash       Total Element     Total Nodes     Boundary Nodes      Pressure Nodes 

  M1=10×10         200               441                 80                     40 

  M2=20×20         800              1681                160                     80 

  M3=30×30        1800              3721                240                    120 

Table 1: Characteristics of the achieved meshes. 
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Boundary conditions (𝑩𝑪𝒔): 

The BCs of the present problem can be define as (see Figure 2): 

The setting of BCs of the present channel problem is laid as follows (see Figure 2):   

    1.  Zero radial velocity is applied at the inlet, outlet and centerline of the channel. 

    2.  Poiseuille(Ps) flow is applied at the inlet.  

    3.  Along with the outflow, zero pressure is applied.  

 

 

 

 

 

 

 

 

        Figure 1: Structured (a) 10x10, (b) 20x20 and (c) 30x30 finite element meshes. 
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5. Numerical results 

      The numerical results concerned with the rate of convergence of the problem under 

consideration by using a Galerkin finite element method. The rate of convergence for axial 

velocity and pressure components for compressible and incompressible cases are presented in 

Figures 3 and 4 based on three different meshes and Re=1. From the findings, one can see that 

for both cases there is clear differences in the level of convergence of velocity for the three 

meshes (see Figure 3). In addition, the velocity convergence in a compressible fluids is higher 

than its counterpart in an incompressible.   

 

 

 

 

 

 

 

   

 

Figure 2: Schema for flow problem and boundary conditions.   

 

   Figure 3: Convergence of velocity; (a) Incompressible, (b) compressible variation, Re=1. 
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Again the pressure convergence is provided in Figures 4 for both compressible and 

incompressible cases based on three various meshes and Re=1. Here, the same featuere of 

velocity convergence is observed in the pressure case. There, in both situations with a higher 

level of convergence in a compressible as compare with an incompressible as well. 

 

 

 

 

 

 

 

 

 

The axial velocity and pressure drop profiles through the centerline are presented in Figure 5 for 

fine mesh in both incompressible and compressible instances and Re=1. The findings reveal that, 

the level of velocity is higher in the compressible case as compared to that for the incompressible 

situation. Same behaviour in pressure is observed, where the maximum level of pressure of 

around 16 units is detected in the compressible case at the inlet of the channel (see Figure 5b). 

Also, more details about the solution components are presented in Table 2.  

 

 

 

 

 

      

     Figure 4: Convergence of pressure; (a) Incompressible, (b) compressible variation, Re=1. 
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Maximum 

value 

Incompressible Compressible 

Re=1 Re=5 Re=10 Re=1 Re=5 Re=10 

𝑢𝑧 2.00168 2.00168 2.00168 2.01702 2.02737 2.03702 

𝑢𝑟 0.00002 0.00003 0.00005 0.000102 0.00013 0.00017 

𝑝 16.1946 16.1977 16.1978 16.2478 16.2678 16.2924 

 

     Moreover, the results for density and Mach number are presented in Figure 6(a,b) for fine 

mesh in compressible instances with Re=1. The profile shows a linear decline in density occurs 

throughout the channel, after which the density reduction to zero. An opposite feature is 

observed in Mach number behaviour throughout the channel, where a sharp increase is occurred 

to reach the maximum level of around 0.0505 units at the outlet of the channel. Thus, from the 

low level of Mach number one can conclude that, the ability of the weakly-compressible 

z (Centerline)


p

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

4
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12

16

20

Compressible

Incompressible

z (Centerline)

u
z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.5
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1.515
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Incompressible

Figure 5: Comparison between Incompressible and compressible solutions along centerline; 

) 3(a) axial velocity, (b) pressure drop, Re=1, fine mesh (M  

 

Table 2: Maximum value: velocity and pressure; 𝑅𝑒-variation 
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implementations. In addition, the low range of Mach number ((0.0492<Ma<0.0506) demonstrate 

that, the piecewise-constant density interpolation is equitable to linear density interpolation. So 

we can say that, our algorithm employ effectively to simulate weakly-compressible. Density is 

plotted as a function of Mach number in Figure 6c. The results show that, a linear related is 

formed between the density and Mach number. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

In this paper, the numerical simulation for compressible Newtonian fluid is achieved based on 

the Galerkin finite element method in a cylindrical coordinates system. Simultaneously to treat 

the non-linear equations, the Newton-Raphson iterative method based on backward difference 

scheme is employed as well. For that purpose three finite element meshes are utilized. The 
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convergence analysis of velocity and pressure was done for both compressible and 

incompressible cases. In this context, the results reveal that, the rate of convergence for 

compressible flow is higher thane incompressible for both velocity and pressure solutions. In 

addition, the level of Mach number and  that relationship with  the density has been studied. 

Consequently, the results show that the low level of Mach number gives a constant density, 

which this in experimental results and with what the other findings. 
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 على طريقة العناصر المحدودة الاعتماد تطوير خوارزمية لتدفق السوائل الانضغاطية النيوتونية  

 ريسان ياسين ياسر ، علاء المسلماوي ،  عبد الرزاقفاطمة 

 البصرة، العراق  قسم الرياضيات ، كلية العلوم ، جامعة البصرة ،

 

 المستخلص 

لعناصر المحدودة  ل  Galerkin  عددي لتدفق نيوتن مضغوط في قناة ثنائية الأبعاد متناظرة. طريقةدراسة    قدمنافي هذه المقالة ،  

لمعادلات    هاتم تطبيق الوقت  المعتمد على  للضغط. معادلة الاستمرارية والحفظ  القابلة  للضغط وغير  القابلة  التدفقات  لاستيعاب 

تحليل    الحقيقلوصف حركة المائع ، والتي يتم الحفاظ عليها في نظام الإحداثيات الأسطواني )تناظر المحور(.    تسُتخدمالزخم  

تدفق   استخدام  يتم   ، هذا   Poiseuilleالطريقة  بسيطة.  اختبار  كمشكلة  الحرارة  متساوي  حالة  تحت  دائرية  قناة  طول  على 

بأخذ مقطع دائري من الأنبوب. مقارنة بين النتائج القابلة للضغط وغير القابلة للضغط في درجات التقارب   ئهيتم إجراالاختبار  

المحوريين قابلة  ئهاتم إجرا  للسرعة والضغط  السرعة والضغط تكون أسرع في حالة غير  النتائج أن معدلات تقارب  . تكشف 

الانضغاط وغير القابل حالة للضغط مقارنةً بالضغط. بالإضافة إلى ذلك ، فإن مستوى تقارب السرعة أعلى من الضغط لكل من 

للضغط. علاوة على ذلك ، فإن المستوى المنخفض لرقم ماخ يوضح أن الاستيفاء متعدد التعريف للكثافة يكون مساويًا لاستيفاء  

 الكثافة الخطية. 
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